134 resultados para effective microorganisms
Resumo:
A series of new single-step methods and their corresponding algorithms with automatic step size adjustment for model equations of fiber Raman amplifiers are proposed and compared in this paper. On the basis of the Newton-Raphson method, multiple shooting algorithms for the two-point boundary value problems involved in solving Raman amplifier propagation equations are constructed. A verified example shows that, compared with the traditional Runge-Kutta methods, the proposed methods can increase the accuracy by more than two orders of magnitude under the same conditions. The simulations for Raman amplifier propagation equations demonstrate that our methods can increase the computing speed by more than 5 times, extend the step size significantly, and improve the stability in comparison with the Dormand-Prince method. The numerical results show that the combination of the multiple shooting algorithms and the proposed methods has the capacity to rapidly and effectively solve the model equations of multipump Raman amplifiers under various conditions such as co-, counter- and bi-directionally pumped schemes, as well as dual-order pumped schemes.
On the effective inversion by imposing a priori information for retrieval of land surface parameters
Resumo:
The electronic structures of GaAs/Ga1-xAlxAs quantum wires (corrugated superlattices) grown on (311)-oriented substrates are studied in the framework of the effective-mass envelope-function method. The electron and hole subband structure and optical transition matrix elements are calculated. When x=1, the results are compared with experiments, and it is found that the direct transition becomes an indirect transition as the widths of well and barrier become smaller.
Resumo:
The transient charge response Q(t) of a two-dimensional electron gas (2DEG) in GaAs/AlxGa1-xAs heterostructures to a small pulse of the gate voltage, applied between the top gate and source electrodes in a Corbino structure, was employed to directly measure the effective diffusion constant of a 2DEG in the quantum Hall regime. The measured diffusion constant D showed a drastic change as the magnetic field was swept through the integer fillings of the Landau levels.
Resumo:
An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.
Resumo:
By using the recently developed exact effective-mass envelope-function theory, the electronic structures of InAs/GaAs strained superlattices grown on GaAs (100) oriented substrates are studied. The electron and hole subband structures, distribution of electrons and holes along the growth direction, optical transition matrix elements, exciton states, and absorption spectra are calculated. In our calculations, the effects due to the different effective masses of electrons and holes in different materials and the strain are included. Our theoretical results are in agreement with the available experimental data.
Resumo:
In the framework of effective-mass envelope-function theory, the optical transitions of InAs/GaAs strained coupled quantum dots grown on GaAs (100) oriented substrates are studied. At the Gamma point, the electron and hole energy levels, the distribution of electron and hole wave functions along the growth and parallel directions, the optical transition-matrix elements, the exciton states, and absorption spectra are calculated. In calculations, the effects due to the different effective masses of electrons and holes in different materials are included. Our theoretical results are in good agreement with the available experimental data.
Resumo:
Effective cavity length method is introduced to vertical cavity surface emitting laser for characterizing some properties, including reflectivity FWHM, mode wavelength and threshold gain. Some experiment results are demonstrated, showing the agreement of theoretical analysis with experiment.
Resumo:
Experimental study of the reverse annealing of the effective concentration of ionized space charges (N-eff, also called effective doping or impurity concentration) of neutron irradiated high resistivity silicon detectors fabricated on wafers with various thermal oxides has been conducted at room temperature (RT) and elevated temperature (ET). Various thermal oxidations with temperatures ranging from 975 degrees C to 1200 degrees C with and without trichlorethane (TCA), which result in different concentrations of oxygen and carbon impurities, have been used. It has been found that, the RT annealing of the N-eff is hindered initially (t < 42 days after the radiation) for detectors made on the oxides with high carbon concentrations, and there was no carbon effect on the long term (t > 42 days after the radiation) N-eff reverse annealing. No apparent effect of oxygen on the stability of N-eff has been observed at RT. At elevated temperature (80 degrees C), no significant difference in annealing behavior has been found for detectors fabricated on silicon wafers with various thermal oxides. It is apparent that for the initial stages (first and/or second) of N-eff reverse annealing, there may tie no dependence on the oxygen and carbon concentrations in the ranges studied.
Microorganisms linked to Neoproterozoic microspar carbonate sedimentation in the Jilin-Liaoning area
Resumo:
Molar-tooth carbonate refers to a sort of rock that has ptygmatical folded structure comparable to the ivory. This kind of carbonate exists in a special time range (from Middle to Neoproterozoic). Its origin and the possibility to use it in stratigraphic correlation of the paleocontinent is the key task of the IGCP447, a project on Proterozoic molar tooth carbonates and the evolution of the earth (2001-2005). The importance lies in that the molar-tooth structure is the key to solving problems related to Precambrian biological and global geochemical events. The molar-tooth structure is associated with microorganisms. Development and recession of such carbonates have relations with the evolution process of early lives and abrupt changes in sea carbonate geochemistry. In recent years, based on researches on petrology, geochemistry and Sr isotope of molar-tooth carbonate in the Jilin-Liaoning and Xuzhou-Huaiyang area, the authors hold that it can be used as a marker for stratigraphic sequence and sedimentary facies analyses.
Resumo:
Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).