115 resultados para diagrammi Penrose spaziotempo singolarità estensione soluzione coordinate gravità
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.
Resumo:
A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.
Resumo:
The title bimetallic compound, [Yb-4(mu(3)-OH)(4)(C6H13NO2)(7)-(H2O)(7)][ZnCl4][ZnCl3(OH)]Cl-4.8H(2)O, was synthesized at near physiological pH (6.0). The compound exhibits some novel structural features, including an asymmetric [Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) complex cation in which four OH groups act as bridging ligands, linking four Yb3+ cations into a Yb4O4 structural unit. Each pair of adjacent Yb3+ ions is further bridged by one carboxy group from a leucine ligand. Water molecules and a monodentate leucine ligand also coordinate to Yb3+ ions, completing their eight-coordinate square-antiprismatic coordination. The Yb-4(mu(3)-OH)(4)(L-leucine)(7)(H2O)(7)](8+) cation, the [ZnCl4](2-), [ZnCl3OH](2-) and Cl- anions, and the lattice water molecules are linked via hydrogen bonds.
Resumo:
A phosphorescent multiple emissive layer, in which a blue emissive layer is sandwiched between red and green ones, is employed in a white organic light-emitting device (OLED). This OLED has a maximum luminance of 48 000 cd/m(2) at 17 V, a maximum power efficiency of 9.9 lm/W at 4 V, and a color rendering index of 82. In addition, the emission color of this device is fairly stable at high luminances: its Commission Internationale de l(')Eclairage coordinate slightly changes from (0.431, 0.436) to (0.400, 0.430) when the luminance ranges from 2000 to 40 000 cd/m(2).
Resumo:
Sequential deprotonations of meso-(p-hydroxyphenyl)porphyrins (p-OHTPPH2) in DMF + H2O (V/V = 1:1) mixture have been verified to result in the appearance of hyperporphyrin spectra. However, when the deprotonations of these p-OHTPPH2 are carried out in DMF, the spectral changes differ considerably from those in the mixture mentioned above. At low [OH-], the optical spectra in the visible region are still considered to have characteristics of hyperporphyrin spectra. Further deprotonation at much higher basicity makes the optical spectra form three-banded spectra similar to those in the acidic solution. To clarify the molecular origins of these changes, UV-vis, resonance Raman (RR), proton nuclear magnetic resonance (H-1 NMR) experiments are carried out. Our data give evidence that p-OHTPPH2 in DMF can be further deprotonated of pyrrolic-H by higher concentrated NaOH, due to an aprotic medium like DMF effectively weakening the basicity of the porphyrin relative to that of the NaOH, and coordinates with two sodium ions (except the sodium ions that interact with the peripherial phenoxide anions) to form the sodium complexes of p-OHTPPH2 (Na2P, to lay a strong emphasis on the sodium ions that coordinate with the central nitrogen atom), which can be regarded as the porphyrin anions being perturbed by the sodium cations due to their highly ionic character.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
The interaction mechanism between Eu3+ and microperoxidase-II (MP-11) in the aqueous solution was investigated using the UV-vis absorption spectroscopy, cyclic voltammetry and electrospray ionization mass spectrometry. It was found that one Eu3+ ion can coordinate with two carboxyl oxygen of two propionic acid groups of the heme group in the MP-11 molecule, leading the increase in the nonplanarity of the porphyrin ring and exposure degree of Fe(III) in the heme group. Therefore, the reversibility of the electrochemical reaction and the electrocatalytic activity of MP-11 for the reduction of oxygen are increased.
Resumo:
A luminescent film with terbium-complex-bridged polysilsesquioxanes has been prepared by sol-gel processing of a new bifunctional monomer that combines the role of a sol-gel molecular precursor with a Tb3+ ion coordinate donor. The emission from Tb3+ ion due to ligand-to-metal energy transfer was observed by UV excitation.
Resumo:
Reaction of anhydrous lanthanide trichlorides with tetrahydrofurfuryl indenyl lithium in THF afforded bis(tetrahydrofurfurylindenyl) lanthanocene chlorides complexes (C4H7OCH2C9H6)(2) LnCl, Ln = Nd (1), Sm (2), Dy (3), Ho (4), Er (5), Yb (6). The X-ray crystallographic structures of all the six complexes were determined and these indicate that they are unsolvated nine-coordinate monomeric complexes with a trans arrangement of both the sidearm and indenyl rings in the solid state. They belong to the same crystal system (orthorhombic) and space group (P2(1)2(1)2(1)) with the same structure. Especially, they are more stable to air and moisture than the corresponding unsubstituted indenyl lanthanide complexes.
Resumo:
The long lasting phosphorescence (LLP) phenomenon in Mn2+-doped ceramic based on ZnO-Al2O3-SiO2 (ZASM) is observed. After irradiation by a UVP standard mercury lamp peaking at 254 nm with a power of 0.6 mW/cm(2) for 15 min, the ceramic sample emits a bright green light peaking at 519 nm, which can be seen in the dark even 15 h after the removal of UVP standard mercury lamp by the naked eyes whose limit of light perception is 0.32 mcd/m(2). The initial afterglow intensity reaches about 1900 mcd/m(2), and the color coordinate (X, Y) is (0.2280, 0.5767) at about 10 s after stopping irradiation. The thermoluminescence (TL) spectra show that there are at least three kinds of trap centers with different trap levels while electron spin resonance (ESR) spectra indicate that there are electron- and hole-trapping centers induced after irradiation by a UVP standard mercury lamp. Based on these measurements, the LLP is considered to be due to the recombination of electrons and holes at trapping centers with different levels, which are firstly thermally released back to Mn2+ and then give rise to the bright green LLP at room temperature.
Resumo:
Three compounds of metalloporphyrins were studied using electrospray ionization mass spectrometry. The bonding power between substitutional phenyl and porphyrin cycle and the coordinate conditions of metalloporphyrins with imidazole were discussed. The experimental result indicated that the bonding power between substitutional phenyl and porphyrin cycle in metalloporphyrins became weak from Mn, Fe to Co. The complexes abundances formed by metallophorphyrin with imidazole were stronger with the increase of the ligand concentration. At the same ligand concentration, the abundance of the complexes was intensified gradually and the stability of the ligands was become stronger from Mn, Fe to Co.
Resumo:
In this paper we describe the moleculare and crystal structures of the Na-3[Hg( II )(edta)Cl] . 6H(2)O (edta=ethylenediamine-N,N,N',N'-tetraacetate). The crystal data are as follows: orthorhombic, a=8. 083 (2) Angstrom , b=13. 870(3) Angstrom , c=38. 617(5) Angstrom , v=4329. 4 (13) Angstrom(3) , Z=8, Dc= 1. 798 g . cm(-3), mu=5. 564 mm(-1), P(000)=2280, R=0. 0317 and R-w=0. 0731 for 3883 unique reflections. In complex, the complex anion [Hg ( II ) (edta)Cl](3-) has a seven-coordination structure like a mono-capped trigonal-prism (C-2v-MTP) in which the edta(4-) acts as a hexadentate ligand with four O atoms and two N atoms and a Cl- caps a quadrilateral face as a seventh ligand. It can be known that the Hg2+ which has a d(10) electronic structure can form a high-coordinate compound with a hexadentate ligand (edta) because it has a big ionic radius.
Resumo:
Resonance electron capture mass spectrometry, in which an additional information coordinate, the energy of electron capture, is applied, has a high sensitivity and a high specificity. It is extensively used to study the structure elucidation, the mechanism of ion formation and the detection, identification and quantification of organic substances in mixture.
Resumo:
A new butterfly-like cluster [WOS3Cu2(PPh3)(2)(Py)(2)] was obtained by reacting [WOS3Cu2(PPb3)(3)] with pyridine. The crystal structure of the cluster has been determined by X-ray diffraction. The compound shows an unusual folded structure, in which two 4-coordinate Cu atoms are bound to the WOS3 moiety via two S-S edges.
Resumo:
Formulas for decomposing of complex crystals to a sum of binary crystals are described and applied to the study of bond covalency in La1-xSrxFeO3 (0.0 less than or equal to x less than or equal to 0.9) and Ca1-xSrxMnO3 (0.0 less than or equal to x less than or equal to 0.5). The bond valence is treated by bond-valence sums scheme. The results indicate that, for both compounds, with the increasing doping level, the bond covalency and bond valence show the same trend, namely, larger bond covalency corresponds to higher bond valence. For La1-xSrxFeO3, with the increase of doping level, the bond covalency of La-O, Ca-O decreases in the orthorhombic (0.0 less than or equal to x less than or equal to 0.2) and rhombohedral (0.4 less than or equal to x less than or equal to 0.7) systems, then increases slightly for the cubic (0.8 less than or equal to x less than or equal to 0.9) system, but that of Fe-O increases for all crystal systems. A sharp decrease in bond covalency was observed where the crystal changes from orthorhombic to rhombohedral, while a smooth trend was seen for the rhombohedral-to-cubic transition. On the other hand, for orthorhombic Ca1-xSrxMnO3, the bond covalency of Ca-O, Sr-O, and Mn-O (4-coordinate site) decreases with the increasing doping level, that of Mn-O (2-coordinate site) increases.