50 resultados para cucumber cotyledons
Resumo:
随着全球生态环境的恶化,各国日益重视对水体中各种污染物的治理。利用藻类的吸收、富集和降解作用,可以去除污水中的营养物质、重金属离子和有机污染物,与其他物理、化学及工程的方法相比,该技术具有以下优点:成本低、能耗小、治理效果较好,对环境污染小,有利于资源化,有利于整体生态环境的改善,是治理水质污染的新途径。 本文利用几种大型海藻对富营养化海水进行处理,结果发现孔石莼、刚毛藻均有很强的吸收N、P的能力,吸收能力依次为褶曲刚毛藻>束生刚毛藻>孔石莼。水体中褶曲刚毛藻3 g/L含量,在3~5小时之内,可把中等以上富营养化海水中的N、P降低至一类海水水平。利用刚毛藻处理富营养化地下海水和养殖废水,进行海参和大菱鲆养殖试验,探索藻类净化水质和废水循环利用的新模式,使水体保持较低的营养盐状态,减轻养殖废水对环境的影响,实现了海水养殖业与环境的可持续发展。 刚毛藻在我国近海滩涂分布广泛,利用它来处理富营养化水体,并和水产养殖业相结合,既净化水体,使养殖废水能循环利用,满足水产养殖的需求,又改善水产业生态环境。同时,将回收藻体生产优质饲料、食品和药物等,实现藻类资源的高值利用。刚毛藻营养丰富,用其替代鼠尾藻作海参饲料,资源丰富,成本低,效果好,是一种值得加以开发利用的宝贵资源,具有广泛的应用前景。 生物吸附法是一种经济有效的移除废水中有害重金属离子的方法。由于藻类细胞壁中的多聚糖可提供吸附重金属的位点,廉价而蕴藏丰富的海藻对多种重金属表现出很强的吸附能力。所以本文通过分批实验,研究了非活体刚毛藻对水体中重金属Cu2+、Pb2+和Cd2+的吸附影响因子、吸附热力学、吸附动力学及吸附机理,得到了平衡等温线及动力学数据。吸附过程的最佳pH值为5.0,吸附量随温度的升高而增加,水体中常见的Na+、K+、Ca2+、Mg2+阳离子及Cl-、NO3-、SO42-、C2O42-等阴离子的存在对吸附的影响并不显著。EDTA存在时,吸附百分率大大降低。吸附等温线符合Langmuir和Freundlich方程。刚毛藻对重金属Cu2+、Pb2+和Cd2+的吸附容量很高,25℃时,对Cu2+、Pb2+和Cd2+的最大吸附容量分别为1.61 mmol/g、0.96 mmol/g和0.98 mmol/g,且吸附过程为吸热反应。刚毛藻对重金属Cu2+、Pb2+和Cd2+的吸附过程为化学吸附,在吸附过程中藻体表面的官能团可能与金属离子发生了螯合作用。吸附动力学过程符合pseudo-二级动力学模型,在初始的30min内,吸附速率很快,随后速率逐渐降低。解吸试验表明,用EDTA可以对重金属进行回收,刚毛藻可以循环利用。实验结果表明刚毛藻是一种高效、经济实用的生物吸附材料,可用来吸附回收水体中的重金属Cu2+、Pb2+和Cd2+等。 通过非活体刚毛藻对重金属Cr6+的吸附影响因子、吸附动力学、吸附机理的研究发现,刚毛藻对Cr6+具有很强的还原能力,对电镀废水中的Cr6+的还原去除提供了非常好的方法。吸附过程的最佳pH值为2~3,实际电镀废水通常在此pH范围,因此处理实际废水时,首先在原酸性条件下,对Cr6+进行还原去除,然后调废水pH至5.0,继续进行吸附,去除其他二价离子及被还原的三价Cr离子,实现了利用同一材料还原Cr6+为Cr3+,并将Cr3+和其他重金属离子同时去除。通过对机理的讨论,认为刚毛藻对Cr6+的生物吸附过程不是一个简单的“离子交换过程”,而是一个“吸附还原过程”。在海藻量足够的前提下,只要时间足够长,Cr6+可被彻底还原去除。 利用工业废弃物褐藻渣,对水体中重金属离子Cu2+、Pb2+、Cd2+及Cr6+的生物吸附特性分别进行了讨论,结果表明褐藻渣对重金属离子的吸附特性与刚毛藻一致,吸附等温线符合Langmuir和Freundlich方程,在25℃时,pH为5.0时,由Langmuir方程求出褐藻渣对Cu2+、Pb2+和Cd2+的最大吸附容量分别为4.20 mmol/g、3.13 mmol/g和2.97 mmol/g。褐藻渣对低、高浓度的重金属Cr6+都具有很强的吸附能力,且移除效果比较彻底。实际应用结果表明,褐藻渣是一种高效、经济实用的生物吸附材料,可用来吸附回收水体中的重金属离子,具有广泛的应用前景。
Resumo:
The coelomocytes suspended in the coelomic fluid and occurring in the coelomic epithelial layer of the sea cucumber Apostichopus japonicus (Selenka) (Holothuroidea: Aspidochirota: Stichopodidae) function as mediators of the immune system, trephocytic cells and nutrient transport cells. Types of coelomocytes are characterized based on their morphological and ultrastructural features. Flow cytometry plus light and electron microscopic analyses were conducted in order to characterize the coelomocytes of A. japonicus. Six types of coelomocytes were identified: lymphocytes, morula cells, amoebocytes, crystal cells, fusiform cells and vibratile cells. Within these major categories, several distinctive cell types occurred that might represent developmental stages. The mean +/- SD coelomocyte concentration in the individuals (body length: 10 to 15 cm; weight: 100 to 150 g) was (3.79 +/- 0.65) X 10(6) cells ml(-1). The coelomic fluid contained mainly hyalinocytes (76.69%) and granulocytes (23.31 %).
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Suspension aquaculture of filter-feeding bivalves has been developing rapidly in coastal waters in the world, especially in China. Previous studies have demonstrated that dense populations of filter-feeding bivalves in shallow water can produce a large amount of faeces and pseudofaeces (biodeposits) that may lead to negative impacts on the benthic environment. To determine whether the deposit feeder Stichopus (Apostichopus) japonicus Selenka can feed on bivalve biodeposits and whether the sea cucumber can be co-cultured with bivalves in suspended lantern nets, three experiments were conducted, two in tanks in the laboratory and one in the field. In a 3-month flow-through experiment, results showed that sea cucumbers grew well with specific growth rate (SGR) reaching 1.38% d(-1), when cultured in the bottom of tanks (10 m(3) water volume) where scallops were cultured in suspension in lantern nets. Moreover, results of another laboratory experiment demonstrated that sea cucumbers could survive well on bivalve biodeposits, with a feeding rate of 1.82 +/- 0.13 g dry biodeposits ind(-1) d(-1), absorption efficiency of organic matter in biodeposits of 17.2% +/- 5.5%, and average SGR of 1.60% d(-1). Our longer-term field experiments in two coastal bays (Sishili Bay and Jiaozhou Bay, northern China) showed that S. japonicus co-cultured with bivalves also grew well at growth rates (0.09-0.31 g wet weight ind(-1) d(-1)) depending on individual size. The results suggest that bivalve lantern nets can provide a good habitat for sea cucumbers; and the co-culture of bivalve molluscs with sea cucumbers may provide an additional valuable crop with no additional inputs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Acute peristome edema disease (APED) is a new disease that broke out in cultured sea cucumber along the Shangdong and Liaoning province coasts in China, PR, and has caused a great deal of death in Apostichopus japonicus (Selenka) since 2004. Here we report virus-like particles found in intestine epithelium of sea cucumbers reared in North China. It is the first time that sea cucumbers are reported to be infected by virus. Histological examinations showed that the viral inclusion bodies existed in intestine epithelium cells. Electron microscopic examinations show that the virions were spherical, 80-100 nm in diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Detailed studies on the morphogenesis of these viruses found many characteristics previously described for coronaviruses. Virus particles always congregated, and formed a virus vesicle with an encircling membrane. The most obvious cellular pathologic feature is large granular areas of cytoplasm, relatively devoid of organelles. Tubular structures within virus-containing vesicles, nucleocapsid inclusions, and double-membrane vesicles are also found in the cytopathic cells. No rickettsia, chlamydia, bacteria, or other parasitic organisms were found. (c) 2007 Elsevier Inc. All rights reserved.