72 resultados para corporate bond price
Resumo:
Bond covalencies in R2BaCuO5 (R = Sm, Gd, Dy, Ho, Y, Er, Tm, Yb, Lu) were calculated by means of a semiempirical method. This method is the generalization of the dielectric description theory of Phillips-Van Vechten-Levine-Tanaka scheme. The present paper presents the formula concerning the decomposing of complex crystals which are usually anisotropic systems into the sum of binary crystals which are isotropic systems. It can be seen that although the bond covalency is related to many physical quantities, it is mainly influenced by bond valence or bond charge, and a higher bond valence will produce higher bond covalency.
Resumo:
We report a semiempirical method for the evaluation of bond covalency in complex crystals. This method is the extension of the dielectric description theory delivered by Phillips, Van Vechten, Levine, and Tanaka (PVLT) which is mainly suitable for binary crystals. Our method offers the advantage of applicability to a broad class of complex materials. The simplicity of the approach allows a broader class of researchers to access the method easily and to calculate not only the bond covalency but also other useful. properties such as bulk modulus. For a series study, a useful trend can be illustrated and often the prediction of the properties of the-missing one(s) among the series can be possible. Finally, examples are given to show how the method is applied and the procedure is transferable to other complex crystals.
Resumo:
The chemical bond parameters, that is, bond covalency, bond susceptibility, and macroscopic linear susceptibility of La1-xCaxCrO3 (x = 0.0, 0.1, 0.2, 0.3) has been calculated using a semiempirical method. This method is the generalization of the dielectric description theory proposed by Phillips, Van Vechten, Levine, and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. One is the bond valence sums (BVS) scheme, and the other is the equal-valence scheme. Both schemes suggest that for the title compounds bond covalency and bond susceptibility are mainly influenced by bond valence and are insensitive to the Ca doping level or structural change. Larger bond valences usually result in higher bond covalency and bond susceptibility. The macroscopic linear susceptibility increases (only slightly for BVS scheme) with the increasing Ca doping level. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The influence of bond valence on bond covalency in La1-xCaxCrO3(x =0.0, 0.1, 0.2, 0.3) has been studied by using semiempirical method. This method is the extension of the dielectric description theory proposed by Phillips, Van Vechten, levine and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. The first is the equal-valence scheme, and the second is Bond Valence Sums (BVS) scheme. Both schemes suggest that for the title compound bond covalency be mainly influenced by bond valence, and insensitive to the Ca doping level. Generally speaking, larger bond valences usually result in higher bond covalencies.
Resumo:
Formulas for decomposing of complex crystals to a sum of binary crystals are described and applied to the study of bond covalency in La1-xSrxFeO3 (0.0 less than or equal to x less than or equal to 0.9) and Ca1-xSrxMnO3 (0.0 less than or equal to x less than or equal to 0.5). The bond valence is treated by bond-valence sums scheme. The results indicate that, for both compounds, with the increasing doping level, the bond covalency and bond valence show the same trend, namely, larger bond covalency corresponds to higher bond valence. For La1-xSrxFeO3, with the increase of doping level, the bond covalency of La-O, Ca-O decreases in the orthorhombic (0.0 less than or equal to x less than or equal to 0.2) and rhombohedral (0.4 less than or equal to x less than or equal to 0.7) systems, then increases slightly for the cubic (0.8 less than or equal to x less than or equal to 0.9) system, but that of Fe-O increases for all crystal systems. A sharp decrease in bond covalency was observed where the crystal changes from orthorhombic to rhombohedral, while a smooth trend was seen for the rhombohedral-to-cubic transition. On the other hand, for orthorhombic Ca1-xSrxMnO3, the bond covalency of Ca-O, Sr-O, and Mn-O (4-coordinate site) decreases with the increasing doping level, that of Mn-O (2-coordinate site) increases.
Resumo:
Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Bond covalency, bond susceptibility and macroscopic linear susceptibility in NdCr1-xMxO3 (M=Mn, Fe, Co, 0.0 less than or equal to x less than or equal to 1.0) are investigated by complex chemical bond theory. The results indicate the bond covalencies are insensitive to the doping level. With the increasing doping level, the macroscopic linear susceptibilities increase for M=Mn, Fe, decrease for M=Co. The valence state of Cr can be strongly influenced by the properties of the doping ions.
Resumo:
The complexes of a series of rare earths with Ge-132 have been prepared. The carboxyl anions of Ge-132 molecule were coordinated to rare earth ion with chelate style. In the complexes molecule, the GeO3/2 group of Ge-132 were hydrolyzed to become -Ge(OH)(3) group, and later does:not coordinate with rare earth ions. All of the complexes possess similar properties. In aqueous solution of pH 6 and 50 degrees C, these complexes can obviously selectively catalytically hydrolize the phosphatide bond of 5'-AMP and 5'-dAMP into phosphatic acid and riboside.
Resumo:
The valence of Pr and relationship between bond covalency and T-c in Y1-xPrxBa2Cu3O7 (x = 0-1) have been studied using complex chemical bond theory. The results indicate that the depression of superconductivity in Y1-xPrxBa2Cu3O7 can be reasonably explained by bond covalency difference for the bonds between CuO2 plane and CuO chain. T-c decreases with the decreasing of bond covalency difference and reaches zero when bond covalency difference is zero (or bond covalency in CuO2 exceeds that in CuO chain) at Pr concentration 0.55 and valence +3.30. These are in good agreement with the experiments and meanwhile suggest that the valence of Pr is + 3.30 in Y1-xPrxBa2Cu3O7. The results also indicate that for Pr valence less than +3.15, superconductivity always exists for whatever Pr concentration, whereas for Pr with a valence of +4.0, superconductivity disappears as soon as Pr concentration exceeds 0.19. This supports with the viewpoint that higher valence Pr will contribute more electrons to CuO2 plane, filling the mobile holes responsible for conduction. For PrBa2Cu3O7 with no Ba-site Pr, our calculation suggests that it will be a superconductor if the average valence of Pr is less than +3.15. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Charge transfer and bond ionicity of some monovalent, divalent, and trivalent binary crystals of A(N)B(8-N) type have been investigated using the self-consistent method. The method divides the binary crystal systems into two subsystems which contain only one kind of element each in physical space. The charge transfer values are obtained by adjusting the charge in a self-consistent way. Based on the obtained charge transfer values, an empirical formula for bond ionicity has been proposed. It has been shown that the present results for bond ionicity are in good agreement with the previous theoretical study delivered by Levine and Pauling. The results also indicate that a large magnitude of charge transfer (or less excess charge in the bonding region) gives rise to high bond ionicity (or low bond covalency); this agrees well with the viewpoint that the excess charge in the bonding region is the origin of the formation of bond covalency. (C) 1998 American Institute of Physics. [S0021-9606(98)00837-X].
Resumo:
By using the dielectric description theory of ionicity of solids, chemical bond properties of rare earth ions with various ligands are studied. Calculated results show that chemical bond properties of the same rare earth ion and the same ligand in different crystals depend on the crystal structures. In a series of compounds, chemical bond properties of crystals containing different rare earth ions are similar. The magnitude of covalency of chemical bonds of trivalent rare earth ions and various ligands has an order like F
Resumo:
The valences of Cu and bond covalencies in Y1-xCaxBa2Cu3O6+y, have been investigated using complex chemical bond theory, This theory is the generalization of Phillips, Van Vechten, Levine, and Tanaka's scheme. The results indicate that the valences of Cu(1) and Cu(2) in our calculation agree well with those obtained by the bond valence sum method. The valences of Cu(1) and Cu(2) in our calculation also suggest that the holes introduced by Ca substitution only reside in CuO2 planes and there is a competing mechanism for the hole density in CuO2 planes between,Ca doping and oxygen depletion. These conclusions are in satisfactory agreement with experiments. The calculated ordering of covalencies is Cu(1)-O(4)>Cu(1)-O(1)>Cu(2)-O(2,3)>Cu(2)-O(1)>Ca-O>Y-O similar to Ba-O, regardless of the Ca doping level and oxygen content. [S0163-1829(98)03325-6].
Resumo:
SmCl3, reacted with CpNa (Cp = Cyclopentadienyl) in the ratio of 1:3 in THF, which then was reacted with (S)-(+)-N-1-(phenylethyl) salicylideneamine/toluene to yield the title complex, [GRAPHICS] The X-ray crystal structure determination of the title complex reveals that 1 is a dimer with intramolecular C-C bond formation and hydrogen transfer, which leads to the configuration turnover of the carbon atom at the benzyl position of the ligand, while those of the newly formed asymmetric centers may have either Ii or S type configurations. (C) 1998 Elsevier Science Ltd. All rights reserved.
Dependence of superconducting temperature on chemical bond parameters in YBa2Cu3O6+delta (delta=0-1)
Resumo:
The chemical bond parameters, that is ionicities and average energy gaps, for all types of chemical bonds in YBa2Cu3O6+delta have been investigated with variation of oxygen content delta (delta = 0.0, 0.35, 0.45, 0.58, 0.64, 0.73, 0.78, 0.81, 0.95, 1.00). The theory used is the complex crystal chemical bond theory, which is the development of P-V-L theory. The two plateaus near 90 K and 60 K in superconducting transition temperatures, and the disappearance of superconductivity with the change of oxygen content, were reasonably explained by chemical bond parameters. The results also showed that the Cu-O chains play a vital role in the transition from non-superconductors to superconductors, and the highest transition temperature occurred when the plane-chain reached a coupling state. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The energy band structures of LaX(X=N, P, As, Sb) crystals have been studied by using LMTO-ASA method. The calculated energy gaps of these crystals are 2. 30 eV for LaN, 2. 05 eV for LaP, 1. 66 eV for LaAs and 1. 34 eV for LaSb. The results are in good agreement with experimental data, At the same time, using these calculated results of energy band structures of these crystals, the chemical bond properties have been analyzed and calculated, The covalency values of these crystals are 26.15% for LaN, 32.54% for LaP, 33.30% for LaAs and 36.49% for LaSb, which agree satisfactorily with the calculated ones by using PV (Phillips-Vechten) theory.