185 resultados para copper complex with 2-amino-1,3,4-thiadiazole
Resumo:
Electroluminescence (EL) devices with Eu(HTH)(3)phen [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione, phen: I 10-phenanthroline] as an emissive centre were fabricated using vacuum evaporation. In addition to the Eu3+ 5D0 --> F-7(J) (J = 0-4) lines that were visible in the photoluminescence signal, the device also showed strong emission from the D-5(1) --> F-7(J) (J = 0-4) transitions. The enhanced emission from the D-5(1) F-7(J) (J = 0-4) transitions was attributed to the increased excitation intensity in the EL device. The luminescence lifetimes of the 5 D, and 5 Do levels were measured to be 0.6 mus and 866 mus, respectively.
Resumo:
New single-polymer electroluminescent systems containing two individual emission species - polyfluorenes as a blue host and 2,1,3-benzothiadiazole derivative units as an orange dopant on the main chain - have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue(lambda(max) = 421 nm/445 nm) and orange emission (lambda(max) = 564 nm)from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light-emitting diodes (PLEDs) based on the single-polymer systems has been investigated. The introduction of the highly efficient 4,7-bis(4-(N-phenyl-N-(4-methylphenyl)amino)phenyl)-2,1,3-benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single-layer device fabricated in air (indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure-white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m(-2), luminance efficiency of 7.30 cd A(-1), and power efficiency of 3.34 lm W-1 can be obtained.
Resumo:
The ligand Hhfth [4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dione], which contains a heptafluoropropyl group, has been used to synthesize several new ternary lanthanide complexes (Ln = Er, Ho, Yb, Nd) in which the synergistic ligand is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy). The two series of complexes are [Ln(hfth)(3)phen] [abbreviated as (Ln)1, where Ln = Er, Ho, Yb] and [Ln(hfth)(3)bipy] [abbreviated as (Ln)2, where Ln = Er, Ho, Yb, Nd]. Members of the two series have been structurally characterized. The growth morphology, diffuse reflectance (DR) spectra, thermogravimetric analyses, and photophysical studies of these complexes are described in detail. After ligand-mediated excitation of the complexes, they all show the characteristic near-infrared (NIR) luminescence of the corresponding Ln(3+) ions (Ln = Er, Ho, Yb, Nd). This is attributed to efficient energy transfer from the ligands to the central Ln(3+) ions, i.e. an antenna effect. The heptafluorinated substituent in the main hfth sensitizer serves to reduce the degree of vibrational quenching. With these NIR-luminescent lanthanide complexes, the luminescent spectral region from 1300 to 1600 nm, which is of particular interest for telecommunication applications, can be covered completely.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.
Resumo:
The efficient synthesis of 5-(5-bromovaleramido)-1,10-phenanthroline, 5-(6-bromohexanamido)-1,10-phenanthroline, and 5-(11-bromoundecanamido)-1,10-phenanthroline are described, which reacted with cis-Ru(bpy)(2)Cl-2. 2H(2)O and sodium hexafluorophosphate to form Ru(bpy)(2)[phen-NHCO(CH2)(n)Br](PF6)(2) (n = 4, 5 or 10; phen = 1,10-phenanthroline). The intricate H-1 NMR spectra at low field of these complexes were completely assigned in virtue of H-1-H-1 COSY technique. Cyclic voltammetry was used to study electrochemical behaviours of these complexes, and their luminescent properties were investigated with fluorescent spectra.
Resumo:
A new lead(II) phosphonate, Pb[(PO3)(2)C(OH)CH3]center dot H2O (1) was hydrothermally synthesized and characterized by IR, elemental analysis, UV, TGA, SEM, and single crystal X-ray diffraction analysis. X-ray crystallographic study showed that complex 1 has a two-dimensional double layered hybrid structure containing interconnected 4- and 12-membered rings and shows an unusual (5,5)-connected (4(7) . 6(3)) (4(8) .6(2)) topology. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate (BCIC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives is carried out by high performance liquid chromatography/atmospheric pressure chemical ionization (LC-APCl-MS-MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent is replaced by 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl functional group, which results in a sensitive fluorescence derivatizing reagent BCIC-Cl. BCIC-Cl can easily and quickly label amines. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography and show an intense protonated molecular ion corresponding m/z [MH](+) under APCl in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 260 corresponding to the cleavage of CH2-OCO bond. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3 to 4-fold molar reagent excess. In addition, the detection responses for BCIC derivatives are compared with those obtained using CEOC and FMOC as derivatization reagents. The ratios of l(BCIC)/l(CEOC) and l(BCIC)/l(FMOC) are, respectively, 1.23-3.14 and 1.25-3.08 for fluorescent (FL) responses (here, l is relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits are calculated from 1.0 pmol injection, at a signal-to-noise ratio of 3, are 10.6-37.8 fmol. The mean interday accuracy ranges from 94 to 105% for fluorescence detection with the largest mean %CV < 7.5. The mean interday precision for all standards is < 6.0% of the expected concentration. Excellent linear responses are observed with coefficients of > 0.9997.
Resumo:
国科图
Resumo:
A new copper-(Schiff-base) complex, derived from (S)-2-amino-1,1-di(3,5-di-t-butylphenyl)propanol, 2-hydroxy-5-nitrobenzaldehyde and copper acetate monohydrate, was used as an efficient catalyst for the cyclopropanation of styrene with diazoacetates, affording ees of up to 98%. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The amplified spontaneous emission properties of a 2, 1, 3-benzothiadiazole attached polyfluorene semiconductor polymer were studied. The conjugated polymer shows a high photoluminescence quantum efficiency of 67% and emits a narrowed blue emissive spectrum with a full width at half-maximum of 3.6 nm when optically pumped, indicating better lasing action. A threshold energy as low as 0.22 mJ pulse(-1) cm(-2), a net gain of 40.54 cm(-1) and a loss of 7.8 cm(-1) were obtained, demonstrating that this conjugated polymer could be a promising candidate as the gain medium for the fabrication of blue polymer lasers.
Resumo:
Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).
Resumo:
The oxovanadium phosphonates (VO(P-204)(2) and VO(P-507)(2)) activated by various alkylaluminums (AlR3, R = Et, i-Bu, n-Oct; HAIR(2), R = Et, i-Bu) were examined in butadiene (Bd) polymerization. Both VO(P-204)(2) and VO(P-507)(2) showed higher activity than those of classical vanadium-based catalysts (e.g. VOCl3, V(acac)(3)). Among the examined catalysts, the VO(P-204)(2)/Al(Oct)(3) system (I) revealed the highest catalytic activity, giving the poly(Bd) bearing M-n of 3.76 x 10(4) g/mol, and M-w/M-n ratio of 2.9, when the [Al]/[V] molar ratio was 4.0 at 40 degrees C. The polymerization rate for I is of the first order with respect to the concentration of monomer. High thermal stability of I was found, since a fairly good catalytic activity was achieved even at 70 degrees C (polymer yield > 33%); the M-n value and M-w/M-n, ratio were independent of polymerization temperature in the range of 40-70 degrees C. By IR and DSC, the poly(Bd)s obtained had high 1,2-unit content (> 65%) with atactic configuration. The 1,2-unit content of the polymers obtained by I was nearly unchanged, regardless of variation of reaction conditions, i.e. [Al]/[V], ageing time, and reaction temperature, indicating the high stability of stereospecificity of the active sites.
Resumo:
Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).