87 resultados para contemporary pacific photography
Resumo:
Mid-ocean ridge basalt (MORB) samples from the East Pacific Rise (EPR 12 degrees 50'N) were analyzed for U-series isotopes and compositions of plagioclase-hosted melt inclusions. The Ra-226 and Th-230 excesses are negatively correlated; the Ra-226 excess is positively correlated with Mg# and Sm/Nd, and is negatively correlated with La/Sm and Fe-8; the Th-230 excess is positively correlated with Fe-8 and La/Sm and is negatively correlated with Mg# and Sm/Nd. Interpretation of these correlations is critical for understanding the magmatic process. There are two models (the dynamic model and the "two-porosity" model) for interpreting these correlations, however, some crucial parameters used in these models are not ascertained. We propose instead a model to explain the U-series isotopic compositions based on the control of melt density variation. For melting either peridotite or the "marble-cake" mantle, the FeOt content, Th-230 excess and La/Sm ratio increases and Sm/Nd decreases with increasing pressure. A deep melt will evolve to a higher density and lower Mg# than a shallow melt, the former corresponds to a long residence time, which lowers the Ra-226 excess significantly. This model is supported by the existence of low Ra-226 excesses and high Th-230 excesses in MORBs having a high Fe-8 content and high density. The positive correlation of Ra-226 excess and magma liquidus temperature implies that the shallow melt is cooled less than the deep melt due to its low density and short residence time. The correlations among Fe-8, Ti-8 and Ca-8/Al-8 in plagioclase-hosted melt inclusions further prove that MORBs are formed from melts having a negative correlation in melting depths and degrees. The negative correlation of Ra-226 excess vs. chemical diversity index (standard deviation of Fe-8, Ti-8 and Ca-8/Al-8) of the melt inclusions is in accordance with the influence of a density-controlled magma residence time. We conclude that the magma density variation exerts significant control on residence time and U-series isotopic compositions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Living planktonic foraminifera (PF) samples from the Okinawa Trough of the northwestern Pacific Ocean were taken for DNA analysis. The SSU rDNA sequences of two PF species, Globigerina sp. and Pulleniatina obliquiloculata collected at Station WP01, were obtained and compared with those from the southwestern Pacific Ocean. Only small differences (< 0.7%-1.2% for P. obliquiloculata, and 0.3% for Globigerina sp.) were found between samples from the north- and south-western Pacific Ocean areas and this molecular evidence supported that these micropaleontological species are the same species, which implies that the West Pacific Ocean circulation system influences the planktonic foraminiferal gene communication.
Resumo:
The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years.
Resumo:
The origin and pathway of the thermostad water in the eastern equatorial Pacific Ocean, often referred to as the equatorial 13 degrees C Water, are investigated using a simulated passive tracer and its adjoint, based on circulation estimates of a global general circulation model. Results demonstrate that the source region of the 13 degrees C Water lies well outside the tropics. In the South Pacific, some 13 degrees C Water is formed northeast of New Zealand, confirming an earlier hypothesis on the water's origin. The South Pacific origin of the 13 degrees C Water is also related to the formation of the Eastern Subtropical Mode Water (ESTMW) and the Sub-Antarctic Mode Water (SAMW). The portion of the ESTMW and SAMW that eventually enters the density range of the 13 degrees C Water (25.8 < sigma(theta) < 26.6 kg m(-3)) does so largely by mixing. Water formed in the subtropics enters the equatorial region predominantly through the western boundary, while its interior transport is relatively small. The fresher North Pacific ESTMW and Central Mode Water (CMW) are also important sources of the 13 degrees C Water. The ratio of the southern versus the northern origins of the water mass is about 2 to 1 and tends to increase with time elapsed from its origin. Of the total volume of initially tracer-tagged water in the eastern equatorial Pacific, approximately 47.5% originates from depths above sigma(theta) = 25.8 kg m(-3) and 34.6% from depths below sigma(theta) = 26.6 kg m(-3), indicative of a dramatic impact of mixing on the route of subtropical water to becoming the 13 degrees C Water. Still only a small portion of the water formed in the subtropics reaches the equatorial region, because most of the water is trapped and recirculates in the subtropical gyre.
Resumo:
The grid altimetry data between 1993 and 2006 near the Philippines were analyzed by the method of Empirical Orthogonal Function (EOF) to study the variation of bifurcation of the North Equatorial Current at the surface of the Pacific. The relatively short-term signals with periods of about 6 months, 4 months, 3 months and 2 months are found besides seasonal and interannual variations mentioned in previous studies. Local wind stress curl plays an important role in controlling variation of bifurcation latitude except in the interannual timescale. The bifurcation latitude is about 13.3A degrees N in annual mean state and it lies at the northernmost position (14.0A degrees N) in January, at the southernmost position (12.5A degrees N) in July. The amplitude of variation of bifurcation latitude in a year is 1.5A degrees, which can mainly be explained as the contributions of the signals with periods of about 1 year (1.2A degrees) and 0.5 year (0.3A degrees).
Resumo:
Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct.-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12A degrees N near the sea surface. This bifurcation shifts northward with depth, reaching about 20A degrees N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21A degrees N, intensifies southward, with its upper boundary surfacing around 12A degrees N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10A degrees N and 12A degrees N at 130A degrees E. In the upper 2 000 dbar, the total westward transport across 130A degrees E between 7.5A degrees N and 18A degrees N reaches 65.4 Sv (1 Sv = 10(-6) m(3)s(-1)), the northward transport across 18A degrees N from Luzon coast to 130A degrees E is up to 35.0 Sv, and the southward transport across 7.5A degrees N from Mindanao coast to 130A degrees E is 27.9 Sv.
Resumo:
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
Resumo:
The interannual anomalies of horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean in an assimilation experiment are studied and compared with existing observational analyses. The assimilation builds upon a hindcast study that has produced a good simulation of the observed equatorial currents and optimizes the simulation of the Reynolds sea surface temperature (SST) data. The comparison suggests that the assimilation has improved the simulation of the interannual horizontal heat advection of the surface mixed layer significantly. During periods of interrupted current measurements, the assimilation is shown to produce more meaningful anomalies of the heat advection than the interpolation of the observational data does. The assimilation also shows that the eddy heat flux due to the correlation between high-frequency current and SST variations, which is largely overlooked by the existing observational analyses, is important for the interannual SST balance over the equatorial Pacific. The interannual horizontal heat advection anomalies are found to be sensitive to SST errors where oceanic currents are strong, which is a challenge for ENSO prediction. The study further suggests that the observational analyses of the tropical SST balance based on the TAO and the Reynolds SST data contain significant errors due to the large gradient errors in the Reynolds SST data, which are amplified into the advection anomalies by the large equatorial currents.
Resumo:
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)degrees] covering the area from 20degreesS to 50degreesN and from 99degrees to 150degreesE is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 in has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
Resumo:
This paper summarizes the progress of large-scale air-sea interaction studies that has been achieved in China in the four-year period from July 1998 to July 2002, including seven aspects in the area of the air-sea interaction, namely air-sea interaction related to the tropical Pacific Ocean, monsoon-related air-sea interaction, air-sea interaction in the north Pacific Ocean, air-sea interaction in the Indian Ocean, air-sea interactions in the global oceans, field experiments, and oceanic cruise surveys. However more attention has been paid to the first and the second aspects because a large number of papers in the reference literature for preparing and organizing this paper are concentrated in the tropical Pacific Ocean, such as the ENSO process with its climatic effects and dynamics, and the monsoon-related air-sea interaction. The literature also involves various phenomena with their different time and spatial scales such as intraseasonal, annual, interannual, and interdecadal variabilities in the atmosphere/ocean interaction system, reflecting the contemporary themes in the four-year period at the beginning of an era from the post-TOGA to CLIVAR studies. Apparently, it is a difficult task to summarize the great progress in this area, as it is extracted from a large quantity of literature, although the authors tried very hard.
Resumo:
An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140degreesE and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference. The NECC transport also has a semi-annual fluctuation resulting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughflow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.
Resumo:
Based on analysis of NCEP reanalysis data and SST indices of the recent 50 years, decadal changes of the potential predictability of ENSO and interannual climate anomalies were investigated. Autocorrelation of Nino3 SST anomalies (SSTA) and correlation between atmospheric anomalies fields and Nino3 SSTA exhibit obvious variation in different decades, which indicates that Nino3 SSTA-related potential predictability of ENSO and interannual climate anomalies has significant decadal changes. Time around 1977 is not only a shift point of climate on the interdecadal time scale but also a catastrophe point of potential predictability of ENSO and interannual climate. As a whole, ENSO and the PNA pattern in boreal winter are more predictable in 1980s than in 1960s and 1970s, while the Nino3 SSTA-related potential predictability of the Indian monsoon and the East Asian Monsoon is lower in 1980s than in 1960s and 1970s.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.
Resumo:
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional, and the energy containing length scale shows a surprising lag of 2-3 months in comparison with the 1-D and 2-D EKE level. A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity shear may drive the EKE level change so that the eddy field takes another 2-3 months to grow and interact to reach a relatively stable state. This explains the seasonal evolution of identifiable eddies.