103 resultados para chloral hydrate
Resumo:
This article investigates the gas production behavior from methane hydrate (MH) in porous sediment by injecting ethylene glycol (EG) solution with the different concentrations and the different injection rates in an one-dimensional experimental apparatus. The results suggest that the gas production process can be divided into the four stages: (1) the initial injection, (2) the EG diluteness, (3) the hydrate dissociation, and (4) the remained gas output. Nevertheless, the water production rate keeps nearly constant during the whole production process. The production efficiency is affected by both the EG concentration and the EG injection rate, and it reaches a maximum with the EG concentration of 60 wt %.
Resumo:
A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.
Resumo:
The methane hydrate was formed in a pressure vessel 38 mm in id and 500 mm in length. Experimental works on gas production from the hydrate-bearing core by depressurization to 0.1, 0.93, and 1.93 MPa have been carried out. The hydrate reservoir simulator TOUGH-Fx/Hydrate was used to simulate the experimental gas production behavior, and the intrinsic hydration dissociation constant (K-0) fitted for the experimental data was on the order of 104 mol m(-2) Pa-1 s(-1), which was one order lower than that of the bulk hydrate dissociation. The sensitivity analyses based on the simulator have been carried out, and the results suggested that the hydrate dissociation kinetics had a great effect on the gas production behavior for the laboratory-scale hydrate-bearing core. However for a field-scale hydrate reservoir, the flow ability dominated the gas production behavior and the effect of hydrate dissociation kinetics on the gas production behavior could be neglected.
Resumo:
Gas hydrate formation experiments were performed using methane in the presence of tetrahydrofuran (THF) in aqueous solution in a transparent bubble column in which a single pipe or a sintered plate was used to produce bubbles. The mole fraction of THF in aqueous solution was fixed at 6%. The hydrate formation kinetic behaviors on the surface of the rising bubble, the mechanical stability of hydrate shell formed on the surface of the bubble, the interactions among the bubbles with hydrate shell were observed and investigated morphologically. The rise velocities of individual bubbles with hydrate shells of different thickness and the consumption rates of methane gas were measured. A kinetic model was developed to correlate the experimentally measured gas consumption rate data. It was found that the hydrate formation rate on the surface of the moving bubble was high, but the formed hydrate shell was not very easy to be broken up. The bubbles with hydrate shells tended to agglomerate rather than merge into bigger bubble. This kind of characteristic of hydrate shell hindered the further formation of hydrate and led to the lower consumption rate of methane. The consumption rate of methane was found to increase with the decrease of temperature or increase of pressure. The increase of gas flux led to a linear increase in consumption rate of methane. It was demonstrated that the developed kinetic model could be used to correlate the consumption rate satisfyingly.
Resumo:
An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is determined by solving initial value problem for system of ordinary differential equations. The distributions of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and the sediment permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.
Resumo:
The crystal structure of K7Na3[H2W12O42]3 . 6H(2)O was determined by X-ray crystallography,and refined to R=0.0864 based on 7024 observed reflections (I>2 sigma(I)). The crystallographic parameters are a=11.755(2), b=13.0493(3), c=16.289(3) Angstrom; alpha=77.13(3)degrees, beta=82.92(3)degrees, gamma=89.65(3)degrees, triclinic, space group, P (1) over bar, V=2416.7(8) Angstrom(3), Z=2, M-r=3330.98, D-cal=4.578Mg/m(3), F(000)=2904; mu (MoK alpha)=29.170mm(-1), T=293K. Two independent polyanions are centered respectively at 1,1,1/2 and 1/2, 1/2, 0, approximately perpendicular to each other with dihedral angle between the equatorial planes of the molecules at 96 degrees. K+ and Na+ respectively occupy the clefts of the two discrete polyanions.
Resumo:
There are no discrete molecules of the title compound, catena-poly[{triaquaterbium-tris-beta-(p-nitro-benzoato)-O,O':O;O:O,O';O:O'-aqua(p-nitroben-zoato-O,O')terbium}-bis-mu-(p-nitrobenzoato-O:O') hydrate], [Tb2(C7H4NO4)6(H2O)5], in the crystal structure.
Resumo:
Interpretation of high-resolution two-dimensional (2D) and three-dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low-amplitude reflections, acoustic turbidity and low P-wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate-amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies-change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically-quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10, 351-368.
Resumo:
Gas hydrate samples were obtained firstly in China by drilling on the northern margin of South China Sea (SCS). To understand the formation mechanism of this unique accumulation system, this paper discusses the factors controlling the formation of the system by accurate geophysical interpretation and geological analysis, based on the high precision 2-D and 3-D multichannel seismic data in the drilling area. There are three key factors controlling the accumulation of the gas hydrate system in fine grain sediment: (1) large volume of fluid bearing methane gas Joins the formation of gas hydrate. Active fluid flow in the northern South China Sea makes both thermal gas and/or biogenic gas migrate into shallow strata and form hydrate in the gas hydrate stability zone (GHSZ). The fluid flow includes mud diapir and gas chimney structure. They are commonly characterized by positive topographic relief, acoustic turbidity and push-down, and low reflection intensity on seismic profiles. The gas chimneys can reach to GHSZ, which favors the development of BSRs. It means that the active fluid flow has a close relationship with the formation and accumulation of gas hydrate. (2) The episodic process of fracture plays an important role in the generation of gas hydrate. It may provide the passage along which thermogenic or biogenic gas migrated into gas hydrate stability zone (GHSZ) upward. And it increases the pore space for the growth of hydrate crystal. (3) Submarine landslide induced the anomalous overpressure activity and development of fracture in the GHSZ. The formation model of high concentration gas hydrate in the drilling sea area was proposed on the basis of above analysis.
Resumo:
Many mud diapirs have been recognized in southern Okinawa Trough by a multi-channel seismic surveying on R/V KEXUE I in 2001. Gas hydrates have been identified, by the seismic reflection characteristics, the velocity analysis and the impedance inversion. Geothermal heat flow around the central of the mud diapir has been determined theoretically by the Bottom Simulating Reflectors (BSRs). Comparing the BSR derived and the measured heat flow values, we infer that the BSR immediately at the top of the mud diapirs indicate the base of the saturated gas hydrate formation zone (BSGHFZ), but not, as we ordinarily know, the base of the gas hydrate stability zone (BGHSZ), which could be explained by the abnormal regional background heat flow and free gas flux associated with mud diapirs. As a result, it helps us to better understand the generation mechanism of the gas hydrates associated with mud diapirs and to predict the gas hydrate potential in the southern Okinawa Trough. (C) 2008 Elsevier Ltd. All rights reserved.