256 resultados para atom-photon collisions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a universal analyzer for the three-particle Greenberger-Horne-Zeilinger (GHZ) states with quantum nondemolition parity detectors and linear-optics elements. In our scheme, all of the three-photon GHZ states can be discriminated with nearly unity probability in the regime of weak nonlinearity feasible at the present state of the art experimentally. We also show that our scheme can be easily extended to the analysis of the multi-particle GHZ states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of the Lambda-system has been studied theoretically in the context of atom localization. In addition to the probe field and the standing wave driving field, a microwave field is introduced to couple the two lower states, and as a result our Lambda-system forms a closed loop. Therefore phase-sensitive atom localization is expected. Indeed by appropriate choice of the relative phase between three fields, an improvement by a factor of 2 has been found in the detection probability of atoms within the sub-wavelength domain of the standing wave. The effect of other parameters is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme of atom localization based on the interference of resonance of double-dark states is proposed, in which the atom interacts with a classical standing-wave field. It is found that the localization property is significantly improved due to the interaction of double-dark resonances. It is realized that the atom is localized just at the nodes of the standing-wave field with higher precision. Moreover, an improvement by a factor of 2 in the detecting probability of a single atom within the subwavelength domain can be achieved by adjusting the probe-field detuning. This scheme shows more advantages than other schemes of atom localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dye, 2,7-bis(4-methoxystyryl)-9,9-bis(2-ethylhexyl)-9H-fluorene, has been synthesized, which is a D-pi-D symmetrical-type fluorene derivative. The two-photon absorption (TPA) of this new dye has been experimentally studied by comparable two-photon-induced fluorescence method. This new dye has a TPA cross-section of 84 x 10(-50) cm(4) s/photon at 790 nm/13 fs. (c) 2004 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of attosecond pulses in a two-level system with permanent dipole moment is investigated. It is shown due to the presence of permanent dipole moments, that the plateau of the high-order harmonic generation spectrum can be extended to X-ray range. Moreover, attosecond pulses with higher intensity can be synthesized by using both even and odd harmonics because of their quantum interference. (c) 2006 Elsevier B.V. All rights reserved.