95 resultados para atmospheric discharges
Resumo:
An efficient method for the catalytic reduction of aromatic nitro compounds to the corresponding aromatic amines is reported. In the presence of selenium as a catalyst, the aromatic nitro compounds are quantitively reduced by CO/H2O to form the corresponding amines under atmospheric pressure. The reduction occurs in high selectivity regardless of other reducible functionalities present on the aromatic ring. There exists a phase transfer process of the catalyst selenium in the reaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The applicability of on-line coupling of reversed-phase high-performance liquid chromatography to atmospheric pressure ionization tandem mass spectrometry for the separation and characterization of hop acids mixture from the crude extract of Humulus lupulus was investigated. The solvent system consisting of acetonitrile-aqueous formic acid was used to give proper separation of the six main hop bitter acids within 30 min. Further structural information about the components was acquired by collision-induced dissociation (CID). On the basis of analyses of the fragmentation patterns of the major alpha- and beta-bitter acids respectively, identification of the minor ones was performed using selected reaction monitoring (SRM) with a group of qualitatively relevant selected precursor-product ion transitions for each bitter acid in a single high performance liquid chromatography (HPLC) run. Using this technique, six minor hop acids, including "adprelupulone" observed for the first time in natural resources, were detected along with the six major acids. This hyphenated techniques provides potency for rapid qualitative determination of analogs and homologs in mixtures. (C) 2004 American Society for Mass Spectrometry.
Resumo:
An efficient method for the synthesis of symmetrical diselenides is described. Reductive selenation of aromatic and heterocyclic aromatic aldehydes (ArCHO) with Se/CO/H2O in DMF afforded diselenides (ArCH2SeSeCH2Ar) in yields up to 94% under atmospheric pressure without use of a base.
Resumo:
The surface solar radiation (SSR) is of great importance to bio-chemical cycle and life activities. However, it is impossible to observe SSR directly over large areas especially for rugged surfaces such as the Qinghai-Tibet Plateau. This paper presented an improved parameterized model for predicting all-sky global solar radiation on rugged surfaces using Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products and Digital Elevation Model (DEM). The global solar radiation was validated using 11 observations within the plateau. The correlation coefficients of daily data vary between 0.67-0.86, while those of the averages of 10-day data are between 0.79-0.97. The model indicates that the attenuation of SSR is mainly caused by cloud under cloudy sky, and terrain is an important factor influencing SSR over rugged surfaces under clear sky. A positive relationship can also be inferred between the SSR and slope. Compared with horizontal surfaces, the south-facing slope receives more radiation, followed by the west- and east-facing slopes with less SSR, and the SSR of the north-facing slope is the least.
Resumo:
Perovskite-type SrZrO3 has been investigated as a candidate material for thermal barrier coating application. During plasma spraying of SrZrO3, SrO volatilized more than ZrO2 and the coating composition deviates from initial stoichiometry. In this investigation, partial evaporation was investigated by spraying SrZrO3 powders into water. The influences of spraying current, distance and particle size of the powder on the partial evaporation were also investigated in a quantitative way. With optimized spraying parameters, stoichiometric SrZrO3 coating was produced by adding an excess amount of Sr in the precursors before plasma spraying to compensate for the volatilized component.
Resumo:
Reactions of Ln(III) acetate (Ln = Pr and Nd) and a polydentate Schiff-base in a mixture of methanol and acetonitrile resulted in the unprecedented assembly of novel Ln(10) aggregates containing two Ln(5) pentagons templated by mu(5)-CO32-, introduced via spontaneous fixation of atmospheric carbon dioxide. Magnetic analysis using an expression including the ligand field effects and molecular field approximation indicates weak antiferromagnetic coupling between the metal ions. This synthetic approach may represent a promising new route toward the design of new lanthanide clusters and novel multifunctional materials.