48 resultados para associative algebra
Resumo:
By now, there are still many unsolved questions about associative priming. This study used process dissociation paradigm, perceptual identification task and speeded naming task,together with near infrared spectroscopy, to investigate priming for new associations and its brain mechanisms systematically. The results showed there was interaction between level of processing and unitization in affecting associative priming. When comparing with shallow encoding unrelated word pairs, the activation of both sides of prefrontal lobe was stronger, which suggested prefrontal lobe had relations with memory for new associations. Medial temporal lobe and frontal lobe lesioned patients were tested respectively using methods of perceptual identification task and speeded naming task. Both brain regions participated in associative priming. Medial temporal lobe mediated unitization between unrelated items. Frontal lobe contributed to priming for new associations by elaborative processing, inhibiting irrelevant information, selective attending to tasks, and establishing some effective strategies. In addition, normal subjects needed to aware the relationship between study and test to form associative priming and densely memory deficit patients could not form memory for new associations. In conclusion, the results further demonstrated that perceptual representation system could not support priming for new associations alone. Medial temporal lobe and frontal lobe played roles in priming for new associations, and there was some relation between associative priming and conscious retrieval processing.
Resumo:
The purpose of this study was to examine the cognitive and neural mechanism underlying the serial position effects using cognitive experiments and ERPs(the event related potentials), for 11 item lists in very short-term and the continuous-distractor paradigm with Chinese character. The results demonstrated that when the length of list was 11 Chinese character, and the presentation time, the item interval and the retention interval was 400ms, the primacy effect and recency effect belong to the associative memory and absolute memory respectively. The retrieval of the item at the primacy part depended mainly on the context cues, but the retrieval of the item at the recency part depended mainly on the memory trace. The same results was concluded in the continuous-distractor paradigm (the presentation time was 1sec, the item interval is 12sec, and the retention interval was 30sec). Cognitive results revealed the robust serial position effects in the continuous-distractor paradigm. The different retrieval process between items at the primacy part and items at the recency part of the serial position curve was found. The behavioral responses data of ERP illustrated that the responses for the prime and recent items differed neither in accuracy nor reaction time, the retrieval time for the items at the primacy part was longer than that for the items at the recency part. And the accuracy of retrieval for the primacy part item was lower than that for the recency part items. That meant the retrieval of primacy part items needed more cognitive processes. The recent items, compared with the prime items, evoked ERPs that were more positive, this enhanced positivity occurred in a positive component peaking around 360ms. And for the same retrieval direction (forward or backward), the significant positive component difference between the retrieval for prime items and the retrieval for recent items was found. But there was no significant difference between the forward and backward retrieval at both the primacy and recency part of the serial position curve. These revealed the two kind of retrieval (forward and backward) at the same part of the serial position curve belonged to the same property. These findings fit more closely with the notion of the distinct between the associative memory and the absolute memory.
Resumo:
The dynamical Lie algebraic approach developed by Alhassid and Levine combined with intermediate picture is applied to the study of translational-vibrational energy transfer in the collinear collision between an atom and an anharmonic oscillator. We find that the presence of the anharmonic terms indeed has an effect on the vibrational probabilities of the oscillator. The computed probabilities are in good agreement with those obtained using exact quantum method. It is shown that the approach of dynamical Lie algebra combining with intermediate picture is reasonable in the treating of atom-anharmonic oscillator scattering.