183 resultados para ammonia in air


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric CO2 for photosynthesis. The pH changes surrounding the H fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H fusiforme, which was sensitive to O-2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode characteristics of three-dimensional (3-D) microsquare resonators are investigated by finite-difference time-domain (FDTD) simulation for the transverse electric (TE)-like and the transverse magnetic (TM)-like modes. For a pillar microsquare with a side length of 2 pin in air, we have Q-factors about 5 X. 103 for TM-like modes at the wavelength of 1550 run, which are one order larger than those of TE-like modes, as vertical refractive index distribution is 3.17/3.4/3.17 and the cororresponding center layer thickness is 0.2 mu m. The mode field patterns show that TM-like modes have much weaker vertical radiation coupling loss than TE-like modes. TM-like modes can have high Q-factors in a microsquare with weak vertical field confinement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eu2+-doped ZnS nanoparticles with an average size of around 3 nm were prepared, and an emission band around 530 nm was observed. By heating in air at 150 degrees C, this emission decreased, while the typical sharp line emission of Eu3+ increased. This suggests that the emission around 530 nm is from intraion transition of Eu2+: In bulk ZnS:Eu2+, no intraion transition of Eu2+ was observed because the excited states of Eu2+ are degenerate with the continuum of the ZnS conduction band. We show that the band gap in ZnS:Eu2+ nanoparticles opens up due to quantum confinement, such that the conduction band of ZnS is higher than the first excited state of Eu2+, thus enabling the intraion transition of Eu2+ to occur.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Al-doped and B, Al co-doped SiO2 xerogels with Eu2+ ions were prepared only by sol-gel reaction in air without reducing heat-treatment or post-doping. The luminescence characteristics and mechanism of europium doping SiO2 xerogels were studied as a function of the concentration of Al, B, the europium concentration and the host composition. The emission spectra of the Al-doped and B, Al codoped samples all show an efficient emission broad band in the blue violet range. The blue emission of the Al-doped sample was centered at 437 nm, whereas the B, Al co-doped xerogel emission maximum shifted to 423 nm and the intensity became weaker. Concentration quenching effect occurred in both the Al-doped and B, Al co-doped samples, which probably is the result of the transfer of the excitation energy from Eu2+ ions to defects. The highest Eu2+ emission intensity was observed for samples with the Si(OC2H5)(4):C2H5OH:H2O molar ratio of 1:2:4. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The combustion of high-temperature off-gas of steelmaking converter with periodical change of temperature and CO concentration always leads to CO and NOx over-standard emissions. In the paper, high-temperature off-gas combustion is simulated by adopting counterflow diffusion flame model, and some influencing factors of CO and NOx emissions are investigated by adopting a detailed chemistry GRI 3.0 mechanism. The emission index of NOx (EINOx) decreases 1.7–4.6% when air stoichiometric ratio (SR) increase from 0.6 to 1.4, and it dramatically increases with off-gas temperature at a given SR when the off-gas temperature is above 1500 K. High-concentration CO in off-gas can result in high NOx emissions, and NOx levels increase dramatically with CO concentration when off-gas temperature is above 1700 K. Both SR and off-gas temperature are important for the increase of CO burnout index (BICO) when SR is less than 1.0, but BICO increase about 1% when off-gas temperature increases from 1100 K to 1900 K at SR > 1.0. BICO increases with CO concentration in off-gas, and the influence of off-gas temperature on BICO is marginal. BICO increases with the relative humidity (RH) in air supplied, but it increases about 0.5% when RH is larger than 30%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present results of the synthesis of gold nanoclusters in sapphire, using Ar ion implantation and annealing in air. Unlike the conventional method of Au implantation followed by thermal annealing, Au was deposited on the surface of m- and a- cut sapphire single crystal samples including those pre-implanted with Ar ions. Au atoms were brought into the substrate by subsequent implantation of Ar ions to form Au nanoparticles. Samples were finally annealed stepwisely in air at temperatures ranging from 400 to 800 C and then studied using UV–vis absorption spectrometry, transmission electron microscopy and Rutherford backscattered spectrometry. Evidence of the formation Au nanoparticles...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laser-induced breakdown plasma is produced by using Q-switched Nd: YAG laser operating at 532 nm, which interacts with the Al alloy sample target in air. The spectral lines in the 230-440 nm wavelength range have been identified, and based on the calibration-free method, the mass concentration of Al alloy are obtained, which is in good agreement with the standard value of the sample.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pt3Sn/C catalyst was prepared by a modified polyol process and treated in air, H-2/Ar, and Ar atmosphere, respectively. XRD analyses indicate that all of these catalysts have face-centered cubic (fcc) crystal structure. Temperature-programmed reduction (TPR) experiments show that more Sn exists in zero-valence in the Ar-treated PtSn catalyst than in the others. Cyclic voltammetry (CV), chronoamperometry (CA) experiments, and the performance tests of direct ethanol fuel cell (DEFC) indicate that the catalytic activity of PtSn/C for ethanol oxidation was affected significantly by the chemical state of Sn in catalyst particles. The as-prepared PtSn/C gives the higher power density, while Ar-treated PtSn/C shows the lower cell performance. It seems that the multivalence Sn rather than the zero-valence Sn in the PtSn catalyst is the favorable form for ethanol oxidation. Energy dispersion X-ray analysis (EDX) of the PtSn/C-as prepared and PtSn/C (after stability test) shows the active species (platinum, tin, and oxygen) composition changed to a different extent. Further attempt to improve the catalyst stability is needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Air-stable n-type field effect transistors were fabricated with an axially oxygen substituted metal phthalocyanine, tin (IV) phthalocyanine oxide (SnOPc), as active layers. The SnOPc thin films showed highly crystallinity on modified dielectric layer, and the electron field-effect mobility reached 0.44 cm(2) V-1 s(-1). After storage in air for 32 days, the mobility and on/off ratio did not obviously change. The above results also indicated that it is an effective approach of seeking n-type semiconductor by incorporating the appropriate metal connected with electron-withdrawing group into pi-pi conjugated system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, monodisperse spherical zirconia (ZrO2) particles with a narrow size distribution were prepared by the controlled hydrolysis of zirconium butoxide in ethanol, followed by heat treatment in air at low temperature from 300 to 500 degrees C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance were used to characterize the samples. The experimental results indicate that the annealed ZrO2 samples exhibit broad, intense visible photoluminescence. The annealing temperature is indispensable for the luminescence of the obtained ZrO2 particles. The emission colors of the ZrO2 samples can be tuned from blue to nearly white to dark orange by varying the annealing temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of eight new polyquinolines and polyanthrazolines with pyrrole isomeric units in main chain were synthesized and characterized. The new polymers showed high glass transition temperatures (T-g = 242-339 degreesC) and excellent thermal stability (T-5% = 398-536 degreesC in air, TGA). Compared to the series of polyanthrazolines, the series of polyquinolines exhibited higher thermal stability, better solubility in common organic solvents, and lower maximum absorption wavelengths (lambda(max)(a)). Polyanthrazolines with 2,5-pyrrole linkage showed an unusually high lambda(max)(a) (565 nm) and small band gap (2.02 eV). All polymers in solution had low photoluminescence quantum yields between 10(-2%) and 10(-5%) and excited-state lifetimes of 0.28-1.29 ns. The effects of molecular structure, especially pyrrole linkage structures, on the electronic structure, thermodynamics, and some of the optical properties of the polymers were explored. A model of hydrogen bonds in the main chain of the polymers was suggested to explain the difference in the properties of the isomer polymers. In addition, a polyquinoline (PBM) was chosen to examine the proton conductivity; the result indicated that the PBM/H3PO4 complex exhibited a high conductivity of 1.5 x 10(-3) S cm(-1) at 157 degreesC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dopant/host concept, which is an efficient approach to enhance the electroluminescence (EL) efficiency and stability for organic light-emitting diodes (OLEDs) devices, has been applied to design efficient and stable blue light-emitting polymers. By covalently attaching 0.2 mol % highly fluorescent 4-dimethylamino-1,8-naphthalimide (DMAN) unit (photoluminescence quantum efficiency: Phi(PL)=0.84) to the pendant chain of polyfluorene, an efficient and colorfast blue light-emitting polymer with a dopant/host system and a molecular dispersion feature was developed. The single-layer device (indium tin oxide/PEDOT/polymer/Ca/Al) exhibited the maximum luminance efficiency of 6.85 cd/A and maximum power efficiency of 5.38 lm/W with the CIE coordinates of (0.15, 0.19). Moreover, no undesired long-wavelength green emission was observed in the EL spectra when the device was thermal annealed in air at 180 degrees C for 1 h before cathode deposition. These significant improvements in both efficiency and color stability are due to the charge trapping and energy transfer from polyfluorene host to highly fluorescent DMAN dopant in the molecular level.