74 resultados para amino acid synthesis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vertebrates, folliculogeneis establishes an intricate system for somatic cell-oocyte interaction, and ultimately leads to the acquisition of their respective competences. Although the formation process and corresponding interactions are strikingly similar in diverse organisms, knowledge of genes and signaling pathways involved in follicle formation is very incomplete and the underlying molecular mechanisms remain enigmatic. CNBP has been identified for more than ten years, and the highest level of CNBP transcripts has been observed in adult zebrafish ovary, but little is known about its functional significance during folliculogeneis and oogenesis. In this study, we clone CNBP cDNA from gibel carp (Carassius auratus gibelio), and demonstrate its predominant expression in gibel carp ovary and testis not only by RTPCR but also by Western blot. Its full-length cDNA is 1402 bp, and has an ORF of 489 nt for encoding a peptide of 163 aa. And its complete amino acid sequence shared 68.5%-96.8% identity with CNBPs from other vertebrates. Based on the expression characterization, we further analyze its expression pattern and developmental behaviour during folliculogeneis and oogenesis. Following these studies, we reveal an unexpected discovery that the CagCNBP is associated with follicular cells and oocytes, and significant distribution changes have occurred in degenerating and regenerating follicles. More interestingly, the CagCNBP is more highly expressed in some clusters of interconnected cells within ovarian cysts, no matter whether the cell clusters are formed from the original primordial germ cells or from the newly formed cells from follicular cells that invaded into the atretic oocytes. It is the first time to reveal CNBP relevance to folliculogeneis and oogenesis. Moreover, a similar stage-specific and cell-specific expression pattern has also been observed in the gibel carp testis. Therefore, further studies on CNBP expression pattern and developmental behaviour will be of significance for understanding functional roles of CNBP during gametogenests. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using degenerate primers based on conserved regions of the UDP-glucose dehydrogenase (UDPGDH) gene, an initial 476-bp DNA fragment was amplified from the water-bloom forming cyanobacterium, Microcystis aeruginosa FACHB 905. TAIL-PCR and ligation-mediated PCR were used to amplify the flanking regions to isolate an about 2.5-kb genomic DNA fragment. Sequence analysis revealed an ORF encoding a putative 462 amino acid protein, designated Mud for Microcystis UDPGDH. The Mud amino acid sequence is closely related to UDPGDH sequences from cyanobacterium Synechocystis PCC6803 (73% identity, 81% similarity), and bacterium Bacillus subtilis (51% identity and 67% similarity). The cloned mud gene was expressed in Escherichia coli using the pGEX-4T-1 fusion expression vector system to generate a GST-Mud fusion protein that exhibited UDPGDH activity. The cytosolic fraction of M aeruginosa FACHB 905 was subjected to Western analysis with an anti-Mud antibody, which revealed a single band of approximately 49 kD, consistent with the deduced molecular mass of the enzyme. The Mud protein could thus be characterized as a UDP-glucose dehydrogenase, which was a key enzyme for polysaccharide synthesis and has, for the first time, been studied in algae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interferon (IFN) exerts its antiviral effect by inducing the expression of a number of IFN-stimulated genes (ISGs) to establish a host antiviral state. Earlier studies identified some important fish IFN system genes from IFN-induced CAB cells (crucian carp Carassius auratus L. embryonic blastulae cells) after treatment with UV-inactivated GCHV (grass carp hemorrhage virus). Herein, the cloning of 2 novel IFN-stimulated genes, termed Gig1 and Gig2, is described for the same cell system. The complete cDNA sequences of Gig1 and Gig2 contain 1244 bp encoding for a 194-amino-acid protein and 693 bp for a 158-amino-acid protein, respectively. A search of public databases revealed that these are 2 novel IFN-stimulated genes, since neither significant homologous genes nor conserved motifs were identified. Active GCHV, UV-inactivated GCHV and CAB IFN-containing supernatant (ICS) induced transcription of these genes and distinct kinetics were observed. An analysis of differences in expression between the 2 genes and the IFN signal factors CaSTAT1 and CaIRF7 indicated that GCHV infection activated different signal pathways for their up-regulation. Upon virus infection, the transcription of Gig1 but not of Gig2 is strongly suppressed by cycloheximide (CHX). In contrast, following treatment with CAB IFN-containing supernatant, CHX does not inhibit either gene transcription. The results suggest that GCHV infection can induce expression of both Gig1 and Gig2 via newly synthesized CAB IFN, most probably through the JAK-STAT signal pathway, and can also directly activate Gig2 transcription without ongoing protein synthesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The double-stranded-RNA-dependent protein kinase (PKR) is an important component in an antiviral defence pathway that is mediated by interferon (IFN) in vertebrates. Previously, some important IFN system genes had been identified from an IFN-producing CAB (crucian carp Carassius auratus blastulae embryonic) cells after treatment with UV-inactivated GCHV (grass carp haemorrhage virus). Here, a fish PKR-like gene, named CaPKR-like, is cloned and sequenced from the same virally infected CAB cells. It has 2192 base pairs in length with a largest open reading frame (ORF) encoding a protein of 513 amino acid residues. BLAST search reveals that the putative CaPKR-like protein is most homologous to human PKR and also has a high-level homology with all members of a family of eIF2alpha kinases. Structurally, CaPKR-like possesses a conserved C-terminal catalytic domain of eIF2alpha kinase family and the most similarity to mammalian PKRs. Within its N-terminus, there are no dsRNA-binding domains conserved in mammalian PKRs instead of two putative Z-DNA binding domains (Zalpha). Like mammalian PKRs, CaPKR-like had a very low level of constitutive expression in normal CAB cells but was up-regulated in response to active GCHV, UV-inactivated GCHV and CAB IFN, implying that the transcriptional activation of CaPKR-like by viral infection is mediated possibly by newly produced CAB IFN, which was further supported by using cycloheximide, a potent inhibitor of protein synthesis. The results together suggested that CaPKR-like was the first identified fish gene most similar to mammalian PKRs. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

过去十多年,世界手性药物市场需求迅速增长,手性制药工业的发展壮大,已经引起了各国政府、学术界,特别是企业界的高度重视。手性药物中含有大量的手性胺单元,因此研究高效构建手性胺结构单元的方法具有重要的意义和实用价值,而亚胺的不对称还原是合成手性胺最便捷的方法。 手性有机小分子路易斯碱催化三氯氢硅不对称还原亚胺是最近几年才发展起来的一类新的亚胺不对称还原方法。尽管在对映选择性和底物适用范围等方面已经获得了突破性的进展,但是,高性能的路易斯碱催化剂仅局限于N-甲酰氨基酸酰胺一种类型,而且其底物适用范围和催化活性仍不够理想。因此,发展新型催化剂很有必要。 手性硫氧化物作为手性诱导剂的应用已经有数十年的时间,广泛应用在不对称合成及天然产物的全合成中。理论上,硫氧结构单元也可以作为路易斯碱,对硅烷类试剂进行活化,而且硫氧键还有碳氧键难以比拟的先天优势,硫原子自带手性特征,在反应过程中,手性中心离反应位点更近,因此,从手性硫氧化合物出发,极有可能开发出新的高效手性路易斯碱催化剂。最近,Kobayashi和Khiar在亚胺的不对称烯丙基化反应中用手性亚砜活化烯丙基三氯硅烷,获得了较好的ee值,但反应中手性亚砜的用量都需要化学计量以上,因此还不能算做真正意义上的催化剂,进一步的文献调研也未见真正意义上的硫手性有机小分子催化剂。 本文首次成功将硫手性亚磺酰胺衍生物应用于催化三氯氢硅对亚胺的不对称还原,在经过对亚磺酰胺衍生物的多次结构优化,开发出了合成容易,催化活性和立体选择性都很优良,并且有着前所未有的底物普适性的新型手性路易斯碱催化剂。 我们首先尝试将商品化的20mol%叔丁基亚磺酰胺和对甲基亚磺酰胺直接用作催化剂催化三氯氢硅对亚胺的不对称还原,尽管仅获得中等的收率和很低的对映选择性,但证明我们的设计思路是可行的。在此基础上,我们以叔丁基亚磺酰胺为原料和基本骨架,设计合成了一系列的亚磺酰胺类催化剂,通过对催化剂的结构改造,发现当催化剂中存在较强酸性的酚羟基时,催化效果得到大幅提高。随着对催化剂的进一步结构优化,我们找到了一个结构简单,催化效果还不错的催化剂,经过反应条件优化以后,催化反应的收率最高能达到98%,对映选择性最高达93%,并且这个催化剂的底物适应范围比之前报道的催化剂都要广泛。针对酚羟基在催化剂中的重要作用,我们进行了仔细的机理研究后发现,在催化反应中,催化剂极有可能是通过双分子机理去活化三氯氢硅从而实现不对称催化的,而酚羟基的作用就是通过分子间氢键促进双分子催化剂与三氯氢硅的络合。受此启发,我们设计了一系列具有双齿结构的催化剂,通过对双齿催化剂的结构优化,最终筛选出了一个结构更加简单,但催化效果更好的双齿催化剂。10mol%该催化剂催化亚胺还原最高获得95%的收率和96%的ee值。这一结果也进一步验证了我们先前对催化剂机理的推测。 随后,我们还尝试将这些催化剂用于二级胺和芳香酮的直接还原胺化反应中,虽然能获得不错的收率,但对映选择性却很差,我们对反应条件进行了仔细的摸索,仍然没有获得突破。但这些实验为进一步研究二级胺和酮的不对称直接还原胺化反应奠定了良好的基础。 In the past decade, the rapid growth of the global chiral drug market and the significant development of the chiral pharmaceutical industry have attracted a great deal of attention from government, academia and enterprises. Chiral amine is an important structural motif of chiral drugs. Therefore, development of methods for the construction of this motif is of great importance. Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines. The chiral Lewis base organocatalysts promoted asymmetric reduction of imines by HSiCl3 has recently achieved significant advancements. Although big breakthroughs have been made in terms of substrate generality and enantioselectivity, the highly effective catalysts are limited to N-formyl amino acid amides, of which the efficiency and substrate scope remain unsatisfactory. Therefore, development of novel organocatalysts for this transformation is in great demand. Chiral sulfoxides have been well established as efficient and versatile stereocontrollers and have been extensively used in asymmetric synthesis and total synthesis of natural products. The S=O structural motif of sulfoxide could also behave as Lewis base activator for cholorsilane reagents, which, moreover, could be even better than caboxamide considering that the sulfur atom is chiral and thus the chirality center is closer to the reaction center. There exist great potentials that highly effective novel Lewis base organocatalysts could be developed starting from S-chiral sulfoxides. Recently, several S-chiral sulfoxides were reported by Kobayashi and Khiar to be used as Lewis base catalyst to activate allyltrichlorosilanes in asymmetric allylations and good enantioselectivities were obtained. However, these S-chiral sulfoxides were all used at a more than stoichiometric amount and were thus not authentically catalytic. A careful literature survey further revealed that there has been so far no S-chiral organocatalyst available. In this study, we, for the first time, successfully used S-chiral sulfinamides as Lewis base organocatalysts for the asymmetric reduction of ketimines by HSiCl3. After several rounds of structural optimization, we developed the first example of highly effective S-chiral organocatalysts, which promoted the asymmetric reduction of ketimines with trichlorosilane in high yield and excellent enantioselectivity with unprecedented substrate spectrum. In our initial practice, we examined 20mol% of the commercially available (R)-tert-butanesulfinamide and (S)-toluenesulfinamide as the catalyst in the hydrosilylation of ketimine. Although the product was only furnished in moderate yield and low ee, these results demonstrated that our strategy of catalyst design is on the right way. Next, starting from chiral tert-butanesulfinamide, we prepared a series of tert-butanesulfinamide derivatives via simple reductive amination and examined their catalytic efficiencies in the reduction of ketimine. We found that the catalyst bearing a phenolic hydroxyl group exhibited good reactivity and enantioselectivity. On the basis of which, we obtained a structurally simple and highly effective novel organocatalyst, affording the product in 98% yield and 93% ee under optimal reaction conditions. After careful exploration on the role of phenolic hydroxyl group in the catalyst, we speculated that two molecules of the catalyst be involved in the course of reaction, of which the assembly around the silicon center is facilitated by the intermolecular hydrogen bonding through the phenolic hydroxyl groups. Thus, we incorporated two units of sulfonamide into one molecular and prepared a new type of bissulfinamides organocatalysts and examined their catalytic efficiencies in the reduction of ketimine. After optimizing the structure of these catalysts, we finally obtained a novel organocatalyst which has even simpler molecular structure but showed better efficacies, 10mol% of which afforded up to 97% yield and 96% ee under optimal reaction conditions. These results further proved our speculation about the catalytic mechanism. We also examined the newly developed S-chiral organocatalysts in direct asymmetric reductive amination of secondary amines with aromatic ketone. The product was furnished in good yield but in low ee. No better results could be obtained despite our intense opimization efforts. Nevertheless, these experiments laid excellent foundations for eventual success.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

穗发芽(PHS,preharvest sprouting)是影响禾本科作物生产的重要的灾害之一。收获时期如遇潮湿天气容易导致穗发芽发生。发生穗发芽的种子内部水解酶(主要是α-淀粉酶)活性急剧升高,胚乳贮藏物质开始降解,造成作物产量和品质严重降低。因此,选育低穗发芽风险的品种是当前作物育种工作中面临的重要任务。 青稞(Hordeum vulgare ssp. vulgare)主要分布于青藏高原,自古以来就是青藏高原人民的主要粮食。近年来,由于青稞丰富的营养成分和特有的保健品质、在燃料工业中的潜力以及在啤酒酿造工业中的利用前景,在发达国家日趋受到重视,掀起综合研究利用的热潮。我国拥有占全世界2/3 以上的青稞资源,具有发展青稞产业的得天独厚的条件。然而,由于青稞收获期间恰逢青藏高原雨季来临,常有穗发芽灾害发生,使青稞生产损失巨大。目前对青稞穗发芽研究很少,适用于育种的穗发芽抗性材料相对缺乏,不能很好的满足青稞穗发芽抗性育种的需要。本研究以青藏高原青稞为材料,对其穗发芽抗性的评价指标和体系进行构建,同时筛选青稞抗穗发芽品种并对其抗性进行评价,还利用分子生物学手段对青稞穗发芽抗性的分子机理进行了初步探讨。主要研究结果如下: 1. 本试验以来自于我国青藏高原地区的青稞为材料,对休眠性测定的温度范围进行探讨,并对各种穗发芽抗性测定方法的对青稞的适用性进行评测。通过探讨温度对13 个不同基因型的青稞籽粒发芽和休眠性表达的影响,对筛选青稞抗穗发芽资源的温度条件进行探索,并初步分析了其休眠性表达的机理。在10,15,20,25,30℃的黑暗条件下,选用新收获的13 个青稞品种为材料进行籽粒发芽实验,以发芽指数(GI)评价其休眠性。结果发现,不同品种对温度敏感性不同,其中温度不敏感品种,在各温度条件下均表现很低的休眠性;而温度敏感品种,其休眠性表达受低温抑制,受高温诱导。15℃至25℃是进行青稞休眠性鉴定的较适宜的温度范围。通过对供试材料发芽后的α-淀粉酶活性,发现温度对青稞种子的休眠性表达的影响至少在一定程度上表现在对α-淀粉酶活性的调控上。随后,对分别在马尔康和成都进行种植的34 份青稞穗发芽指数(SI),穗发芽率(SR),籽粒发芽指数(GI)和α-淀粉酶活性(AA)进行了测定和分析,发现它们均受基因型×栽培地点的极显著影响,且四个参数之间具有一定相关性。GI 参数由于其变异系数较低,在不同栽培地点稳定性好,且操作简便,是较可靠和理想的穗发芽评价参数。SI 参数可作为辅助,区别籽粒休眠性相似的材料(基因型)或全面评价材料(基因型)的穗发芽抗性特征。AA 参数稳定性较差,并且检测方法复杂,因此不建议在育种及大量材料筛选和评价时使用。此外,青稞穗发芽抗性受环境影响较大,评价时应考虑到尽可能多的抗性影响因素及其在不同栽培条件下的变异。 2. 对来自青藏高原的青稞穗发芽抗性特征及其与其它农艺性状间的关系进行研究。通过测定穗发芽指数(SI)、籽粒发芽指数(GI)和α-淀粉酶活性(AA),表明113 份青稞材料的穗发芽抗性具有显著差异。SI、GI 和AA 参数的变幅分别为1.00~8.86、0.01~0.97 和0.00~2.76,其均值分别为4.72、0.63 和1.22。根据SI 参数,六个基因型,包括‘XQ9-5’,‘XQ33-9’,‘XQ37-5’,‘XQ42-9’,‘XQ45-7’和‘JCL’被鉴定为抗性品种。综合SI、GI 和AA 参数,可以发现青稞的穗发芽抗性机制包含颖壳等穗部结构的抗性和种子自身的抗性(即种子休眠性),且供试材料中未发现较强的胚休眠品种,除‘XQ45-7’外,所有品种在发芽第四天均能检测出α-淀粉酶活性。穗部结构和种子休眠的抗性机制因基因型不同而不同,在穗发芽抗性中可单独作用或共同作用。农家品种和西藏群体分别比栽培品种和四川群体的穗发芽抗性强,而在不同籽粒颜色的青稞中未发现明显差异。相关性检验发现,青稞的穗发芽抗性,主要是种子休眠性,与百粒重、开花期、成熟期、穗长、芒长和剑叶长呈显著负相关关系,与株高相关性不显著。农艺性状可以作为穗发芽抗性材料选育中的辅助指标。本试验为青稞穗发芽抗性育种研究提供了必要的理论基础和可供使用的亲本材料。 3. α-淀粉酶是由多基因家族编码的蛋白质,在植物种子萌发时高度表达,与植物种子的萌发能力密切相关。在大麦种子发芽时,高等电点α-淀粉酶的活性远大于低等电点的α-淀粉酶。为了研究不同穗发芽抗性青稞品种中编码高等电点α-淀粉酶Amy1 基因结构与抗性间的关系,我们以筛选得到的抗性品种‘XQ32-5’(TR1)、‘XQ37-5’(TR2)、‘XQ45-7’(TR3),易感品种‘97-15’(TS1)、‘9657’(TS2)以及强休眠大麦品种‘SAMSON’(SAM)为材料,对其Amy1 基因的编码区序列进行克隆和结构分析,并对它们推导的氨基酸序列进行比较。结果显示,青稞Amy1 基因具有三个外显子、两个内含子,编码区中有13 个核苷酸变异位点,均位于2、3 号外显子,2 个变异位点位于2 号外显子。SAM 和TS1 分别在2 号外显子相应位置有5 个相同的碱基(GAACT)的插入片段。相应α-淀粉酶氨基酸序列推导发现,所有核苷酸变异中有8 个导致相应氨基酸残基的改变,其余位点为同义突变。青稞Amy1 基因编码区序列品种间相似度高达99%以上,部分序列变异可能与其穗发芽抗性有关。随后,我们又通过SYBR Green 荧光定量技术对该基因在不同发芽时间(1d~7d)的相对表达水平进行了差异性检测。结果发现,7 天内不能检测到SAM 的Amy1 基因表达,5 个青稞品种间的Amy1 基因的相对表达量均随着发芽时间延长而上升,但上升方式有所不同。弱抗品种该基因表达更早,转录本增加速率更大,且在4~5 天可达到平台期。发芽7 天中,抗性品种总转录水平明显低于易感品种。本研究结果表明,青稞Amy1 基因的转录水平是与其穗发芽抗性高度相关。 我国青藏高原青稞,尤其是农家品种的穗发芽抗性具有丰富的变异,蕴藏着穗发芽抗性育种的宝贵资源。本研究为青稞穗发芽抗性育种建立了合理抗性评价体系,筛选出可供育种使用的特殊材料,阐明了农艺性状可辅助穗发芽抗性育种,同时还对穗发芽抗性与α-淀粉酶基因的结构和表达关系进行分析,为青稞穗发芽抗性资源筛选奠定了基础。 Preharvest sprouting (PHS) is a serious problem in crop production. It often takes place when encountering damp, cold conditions at harvest time and results in the decrease of grain quality and great loss of yield by triggering the synthesis of endosperm degrading enzymes (mostly the α-amylase). Therefore, PHS is regarded as an important criterion for crop breeding. In order to minimize the risk of PHS, resistant genotypes are highly required. Hulless barley (Hordeum vulgare ssp. vulgare) is the staple food crop in Qinghai-Tibetan Plateau from of old, where is one of the origin and genetic diversity centers of hulless barley. Recently, interest in hulless barley has been sparked throughout the world due to the demonstrations of its great potential in health food industry and fuel alcohol production. Indeed, hulless barley can also be utilized to produce good quality malt if the appropriate malting conditions are used. In China, overcast and rainy conditions often occur at maturity of hulless barley and cause an adverse on its production and application. PHS resistant genotypes, therefore, are highly required for the hulless barley breeding programs. However, few investigations have been made so far on this issue. The objectives of this study were: 1) to assessment of methods used in testing preharvest sprouting resistance in hulless barley; 2) to evaluate the variability and characteristics of PHS resistance of hulless barley from Qinghai-Tibet Plateau in China; 3) to select potential parents for PHS resistance breeding; 4) to primarily study on the molecular mechanism of PHS resistance of hulless barley. Our results are as followed: 1. We investigated the temperature effects on seed germination and seed dormancy expression of hulless barley, discussed appropriate temperature range for screening of PHS resistant varieties, and analyzed the mechanism of seed dormancy expression of hulless barley. The dormancy level of 13 hulless barley were evaluated by GI (germination index) values calculating by seed germination tests at temperature of 10,15,20,25,30℃ in darkness. There were great differences in temperature sensitivity among these accessions. The insensitive accessions showed low dormancy at any temperature while the dormancy expression of sensitive accessions could be restrained by low temperature and induced by high temperature. The temperature range of 15℃ to 25℃ was workable for estimating of dormancy level of hulless barley according to our data. Analysis of α-amylase activity showed that the temperature effects on seed germination and the expression of seed dormancy be achieved probable via regulating of α-amylase activity. Furthermore, we evaluated the differences in sprouting index (SI), sprouting rate (SR), germination index (GI) and α-amylase activity (AA) between Maerkang and Chengdu among 34 accessions of hulless barley from Qinghai-Tibetan Plateau in China. These PHS sprouting parameters were significantly affected by accession×location, and they had correlation between each other. GI was the most reliable parameter because of its low CV value, good repeatability and simple operation. SI could assist in differentiating between accessions of similar dormancy or overall evaluation of the resistance. AA was bad in repeatability and had relatively complex testing method, therefore, not appropriate for breeding and evaluation and screening of PHS resistant materials. Besides, since PHS resistance of hulless barley was greatly influenced by its growth environment, possibly much influencing factors and variations between cultivated conditions should be considered. 2. In this study, large variation was found among 113 genotypes of hulless barley (Hordeum vulgare ssp.vulgare) from Qinghai-Tibetan Plateau in China, based on the sprouting index (SI), germination index (GI) and α-amylase activity (AA) which derived from sprouting test of intact spikes, germination test of threshed seeds and determination of α-amylase activity, respectively. The range of SI, GI and AA was 1.00~8.86, 0.01~0.97 and 0.00~2.76,the mean was 4.72, 0.63 and 1.22 espectively. Six resistant genotypes, including ‘XQ9-5’, ‘XQ33-9’, ‘XQ37-5’, ‘XQ42-9’, ‘XQ45-7’ and ‘JCL’, were identified based on SI. Integrating the three parameters, it was clear that both hulls and seeds involved in PHS resistance in intact spikes of hulless barley and there was no long-existent embryo dormancy found among the test genotypes. All the genotypes, except ‘XQ45-7’, had detectable α-amylase activity on the 4th day after germination. There was PHS resistance imposed by the hull and seed per se and the two factors can act together or independent of each other. Besides, landraces or Tibet hulless barley had a wider variation and relatively more PHS resistance when compared with cultivars or Sichuan hulless barley. No significant difference was found among hulless barley of different seed colors. The correlation analysis showed PHS resistance was negatively related to hundred grain weight, days to flowering, days to maturity, spike length, awn length and flag length but not related to plant height. This study provides essential information and several donor parents for breeding of resistance to PHS. 3. Alpha-amylase isozymes are encoded by a family of multigenes. They highly express in germinating seeds and is closely related to seed germination ability. In barley germinating seeds, the activity of high pI α-amylase is much higher than low pI α-amylase. The aim of this study was to determine the relationship between preharvest sprouting resistance of hulless barley and the gene structure of Amy1 gene which encodes high pI α-amylase. The coding region and cDNA of Amy1 gene of three resistant accessions, including ‘XQ32-5’ (TR1), ‘XQ37-5’ (TR2), ‘XQ45-7’ (TR3), two susceptible accessions ‘97-15’ (TS1), ‘9657’ (TS2) and one highly dormant barley accession ‘SAMSON’ (SAM) was cloned. Analysis of their DNA sequences revealed there were three exons and two introns in Amy1 gene. Thirteen variable sites were in exon2 and exon3, 2 variable sites were in intron2. SAM and TS1 had a GAACT insert segment in the same site in intron2. Only 8 variable sites caused the change of amino acid residues. There were 99% of similarity between the tested hulless barley and some of the variable sites might be related with preharvest sprouting resistance. Then, we investigated the expression level of Amy1 gene in the 7-day germination test. Results of quantitative real-time PCR indicated that the relative expression trends of Amy1 gene were the same but had significant differences in the increase fashion between hulless barleys and no detectable expression was found in SAM. Susceptible accessions had earlier expression and faster increase and reached the maximum on day 4 ~ day 5. Besides, total transcripts level was found lower in resistant accessions than susceptible accessions. This study indicated that α-amylase activity was highly related to the transcription level of Amy1 gene which not correlated to missense mutation sites. In conclusion, hulless barley, especially the landraces from Qinghai-Tibetan Plateau in China possesses high degree of variation in PHS performance, which indicates the potential of Tibetan hulless barley as a good source for breeding of resistance to PHS. This study provides several donor parents for breeding of resistance to PHS. Our results also demonstrate that agronomic traits may be used as assistants for PHS resistance selection in hulless barley. Besides, analysis of high pI α-amylase coding gene Amy1 revealed the relative high expression of was Amy1 one of the mainly reason of different PHS resistance level in hulless barley.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Four kinds of functional poly(gamma-benzyl-L-glutamate) (PBLG) copolymers containing chloro, azido, allyl or propargyl groups on the side chains were synthesized through ester exchange reactions of PBLG with functional alcohols without any protection and de-protection process. Hydrolysis of PBLG, which was found during the ester exchange reaction under low ratios of alcohol to the repeat units of PBLG, was thoroughly investigated, and could be successfully depressed by addition of certain amount of benzyl alcohol to the reaction system. Click chemistry reactions of the azidized or propargylated copolymers, thiol-ene reaction of the allyllated copolymer were taken successfully, indicating that the functional groups on the copolymers were still reactive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lanthanide Eu3+ and Tb3+ ions have been widely used in luminescent resonance energy transfer (LRET) for bioassays to study metal binding microenvironments. We report here that Eu3+ or Tb3+ can increase the binding affinity of antitumor antibiotic drug agent, 7-amino actinomycin D (7AACTD), binding to 5'-GT/TG-5' or 5'-GA/AG-5' mismatched stem region of the single-stranded hairpin DNA. Further studies indicate that the effect of Eu3+ or Tb3+ on 7AACTD binding is related to DNA loop sequence. Our results will provide new insights into how metal ions can enhance antitumor agents binding to their targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intramolecular amide hydrolysis of N-methylmaleamic acid is revisited at the B3LYP/6-311G(2df,p)//B3LYP/6-31G(d,p)+ZVPE level, including solvent effects at the CPCM-B3LYP/6-311G(2df,p)//Onsager-B3LYP/6-31G(d,p)+ZPVE level. The concerted reaction mechanism is energetically favorable over stepwise reaction mechanisms in both the gas phase and solution. The calculated reaction barriers are significantly lower in solution than in the gas phase. In addition, it is concluded that the substituents of the four N-methylmaleamic acid derivatives considered herein have a significant effect on the gas-phase reaction barriers but a smaller, or little, effect on the barriers in solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The velvet antler polypeptide CNT14 was extracted and purified by gel filtration, ion exchange chromatography and RP C, which showed a single peak in HPLC chromatography and a single band in SDS-PAGE. The molecular weight measured by MALDI/TOF/MS spectrum was 1479. 9028. The polypeptide consisted mostly of Glu, Leu, Val, Pro. The amino acid sequence of the polypeptide was detected with ESI-MS/ MS, and the sequence was E-P-T-V-L-D-E-V-C-L-A-H-G-P. The experiments of biological activity of polypeptide CNT14 in vivo were carried out, and the results show that CNT14 has stimulant effects on the growth of rat HT22 cells. Then we produced the polypeptide CNT14 according the amino acid sequence by solid phase synthesis, confirmed the sequence of the polypeptide to be consistent with the amino acid sequence of polypeptide CNT14 which was separated from the velvet antler.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodegradable, amphiphilic, four-armed poly(epsilon-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) copolymers were synthesized by ring-opening polymerization of ethylene oxide in the presence of four-armed poly(epsilon-caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL-b-PEO copolymer was confirmed by H-1 NMR and C-13 NMR. The hydroxyl end groups of the four-armed PC L were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four-armed architecture of the copolymer. Physicochemical properties of the four-armed block copolymers differed from their starting four-armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four-armed block copolymer increased with PEO length and PEO content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report here that a cubane-like europium-L-aspartic acid complex at physiological pH can discriminate between DNA structures as judged by the comparison of thermal denaturation, binding stoichiometry, temperature-dependent fluorescence enhancement, and circular dichroism and gel electrophoresis studies. This complex can selectively stabilize non-B-form DNA polydApolydT but destabilize polydGdCpolydGdC and polydAdTpolydAdT. Further studies show that this complex can convert B-form polydGdCpolydGdC to Z-form under the low salt condition at physiological temperature 37 degrees C, and the transition is reversible, similar to RNA polymerase, which turns unwound DNA into Z-DNA and converts it back to B-DNA after transcription. The potential uses of a left-handed helix-selective probe in biology are obvious. Z-DNA is a transient structure and does not exist as a stable feature of the double helix. Therefore, probing this transient structure with a metal-amino acid complex under the low salt condition at physiological temperature would provide insights into their transitions in vivo and are of great interest.