105 resultados para Zigzag edges
Resumo:
Based on Stefan-Boltzman and Lambert theorems, the radiation energy distribution on substrate (REDS) from catalyzer with parallel filament geometry has been simulated by variation of filament and system layout in hot-wire chemical vapor deposition. The REDS uniformity is sensitive to the distance between filament and substrate d(f-s) when d(f-s) less than or equal to 4 cm. As d(f-s) > 4 cm, the REDS uniformity is independent of d(f-s) and is mainly determined by filament number and filament separation. Two-dimensional calculation shows that the REDS uniformity is limited by temperature decay at filament edges. The simulation data are in good agreement with experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.
Resumo:
The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally. Such a barrier has been predicted by previous theories. From the deep-level transient spectroscopy (DLTS) measurements, we have obtained the electron and hole energy levels of quantum dots E-e(QD-->GaAs) = 0.13 eV and E-h(QD-->GaAs) = 0.09 eV relative to the bulk unstrained GaAs band edges E-c and E-v. DLTS measurements have also provided evidence to the existence of the capture barriers of quantum dots for electron E-eB = 0.30 eV and hole E-hB = 0.26 eV. The barriers can be explained by the apexes appearing in the interface between InAs and GaAs caused by strain. Combining the photoluminescence results, the band structures of InAs and GaAs have been determined.
Resumo:
A deep level transient spectroscopy technique has been used to determine the emission activation energies and capture barriers for electrons and holes in InAs self-assembled quantum dots embedded in GaAs. The ground electron and hole energies relative to their respective energy band edges of GaAs are 0.13 and 0.09 eV. Measurements show that the capture cross section of quantum dots is thermally activated. The capture barrier of quantum dots for electrons and holes are 0.30 and 0.26 eV, respectively. The results fit well with the results of photoluminescence spectroscopy measurements. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Samples have been prepared at different temperatures by loading It molecules into the cages of zeolite 5A, and the measurements of the absorption spectra have been carried out for the prepared samples. It is shown that 12 molecular clusters are formed in the cages of zeolite 5A, and it is also found that molecular clusters which are bonded with intermolecular forces have an important feature, namely, the intermolecular distance in molecular clusters can be changed on different preparing conditions and the blue shift of absorption edges can not be as the criterion of forming molecular clusters.
Resumo:
In this paper, we construct (d, r) networks from sequences of different irrational numbers. In detail, segment an irrational number sequence of length M into groups of d digits which represent the nodes while two consecutive groups overlap by r digits (r = 0,1,...,d-1), and the undirected edges indicate the adjacency between two consecutive groups. (3, r) and (4, r) networks are respectively constructed from 14 different irrational numbers and their topological properties are examined. By observation, we find that network topologies change with different values of d, r and even sequence length M instead of the types of irrational numbers, although they share some similar features with traditional random graphs. We make a further investigation to explain these interesting phenomena and propose the identical-degree random graph model. The results presented in this paper provide some insight into distributions of irrational number digits that may help better understanding of the nature of irrational numbers.
Resumo:
SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.
Resumo:
The objective of this paper is to investigate the effects of channel surface wettability and temperature gradients on the boiling flow pattern in a single microchannel. The test section consists of a bottom silicon substrate bonded with a top glass cover. Three consecutive parts of an inlet fluid plenum, a central microchannel and an outlet fluid plenum were etched in the silicon substrate. The central microchannel had a width of 800 mu m and a depth of 30 mu m. Acetone liquid was used as the working fluid. High outlet vapor qualities were dealt with here. The flow pattern consists of a fluid triangle (shrinkage of the liquid films) and a connected long liquid rivulet, which is generated in the central microchannel in the timescale of milliseconds. The peculiar flow pattern is formed due to the following reasons: (1) the liquid rivulet tends to have a large contact area with the top hydrophilic channel surface of the glass cover, but a smaller contact area with the bottom silicon hydrophobic surface. (2) The temperature gradient in the chip width direction at the top channel surface of the glass cover not only causes the shrinkage of the liquid films in the central microchannel upstream, but also attracts the liquid rivulet populated near the microchannel centerline. (3) The zigzag pattern is formed due to the competition between the evaporation momentum forces at the vapor-liquid interfaces and the force due to the Marangoni effect. The former causes the rivulet to deviate from the channel centerline and the latter draws the rivulet toward the channel centerline. (4) The temperature gradient along the flow direction in the central microchannel downstream causes the breakup of the rivulet to form isolated droplets there. (5) Liquid stripes inside the upstream fluid triangle were caused by the small capillary number of the liquid film, at which the large surface tension force relative to the viscous force tends to populate the liquid film locally on the top glass cover surface.
Resumo:
The characteristic features of the absorption and photoluminescence spectra of ZnSe quantum dots (QDs) inside a silica matrix derived from a sol-gel method were studied at room temperature. Compared with the bulk materials, the absorption edges of ZnSe QDs in silica gel glass were shifted to higher energies and the spectra exhibited the discrete excitonic features due to the quantum confinement effects. Besides the band-edge emission, photoluminescence at ultraviolet excitation also showed the emissions related to the higher excitonic states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Multi-frame image super-resolution (SR) aims to utilize information from a set of low-resolution (LR) images to compose a high-resolution (HR) one. As it is desirable or essential in many real applications, recent years have witnessed the growing interest in the problem of multi-frame SR reconstruction. This set of algorithms commonly utilizes a linear observation model to construct the relationship between the recorded LR images to the unknown reconstructed HR image estimates. Recently, regularization-based schemes have been demonstrated to be effective because SR reconstruction is actually an ill-posed problem. Working within this promising framework, this paper first proposes two new regularization items, termed as locally adaptive bilateral total variation and consistency of gradients, to keep edges and flat regions, which are implicitly described in LR images, sharp and smooth, respectively. Thereafter, the combination of the proposed regularization items is superior to existing regularization items because it considers both edges and flat regions while existing ones consider only edges. Thorough experimental results show the effectiveness of the new algorithm for SR reconstruction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
以黄土高原南部地区的两个定位试验为基础,研究了旱地不同栽培和施肥模式对土壤微生物量碳、氮和可溶性有机碳、氮的影响。结果表明,秸秆覆盖显著提高土壤微生物量氮(SMBN)含量,地膜覆盖使SMBN含量显著降低;秸秆和地膜覆盖显著降低小麦拔节期和灌浆期土壤可溶性有机氮(SON)含量。适量施用化学氮肥(120kg/hm2)有利于小麦生长后期SMBN含量的升高,而过量施用(240 kg/hm2)显著降低SMBN含量。与不施肥处理相比,土地经长期撂荒后0-10 cm土层SMBC,SMBN,SOC和SON含量显著提高;氮磷钾配施有机肥显著提高小麦各生育期0-10,10-20 cm土层SMBC,SMBN,SOC和SON的含量;单施氮磷钾肥对土壤SMBC,SMBN含量无明显影响,提高土壤SOC,SON的平均含量。土壤SMBC,SMBN,SOC和SON含量两两之间呈极显著正相关关系,四者含量与土壤有机碳、全氮含量间的正相关关系也达显著或极显著水平。
Resumo:
Samples with different weight ratio of Se to zeolite 5A (Se concentration) have been prepared by loading Se into the pores of zeolite 5A, and the measuerments of the absorption and Raman spectra have been carried out for the prepared samples. The measured absorption edges of the samples are close to the value for monoclinic Se containing Se-8-ring, suggesting the formation of Se-8-ring clusters(1) in the pores. The continuous and broadening features of the absorption spectra are interpreted by the strong electron-nucleus coupling in the Se-8-ring cluster. The absorption edges are red shifted with the increase of the Se concentration. It is tentatively attributed to two reasons. One is the existence of the double Se-8-ring cluster in the high Se concentration samples, and the other is that for the strong electron-nucleus coupling cluster, the absorption edge of the clusters system will be red shifted with the increase of the cluster concentration in the clusters system. A single broad band at about 262 cm(-1) is observed in the Raman spectra, which further supports the formation of Se-8-ring clusters. (C) 1997 Published by Elsevier Science S.A.
Resumo:
Samples with different weight ratio of Se to zeolite 5A (Se composition) have been prepared by loading Se into the cages of zeolite 5A and the measurements of the absorption and Raman spectra have been carried out for the prepared samples. The measured absorption edges of the samples close and blue shifted to the value for monoclinic Se containing Se-8-ring, suggesting the formation of Se-8-ring clusters dagger in the cages. The continuous and broadening features of the absorption spectra are interpreted by the strong electron-phonon coupling in Se-8-ring clusters. The sample with high Se composition has a red shift of the absorption band edge relative to the samples with less Se composition. It is tentatively attributed to the reason that with different Se composition, single Se-8-ring clusters and double Se-8-ring clusters are formed in the cages of zeolite 5A. A single broad band at about 262 cm(-1) is observed in the Raman spectra, that gives the further support of the formation of Se-8-ring clusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
PbS clusters in zeolite-Y have been prepared with the reaction of Pb2+-ion-exchanged zeolite-Y with Na2S in solution at room temperature. Their absorption spectra show dramatic blue shifts from that of the bulk PbS. Obvious change of both the absorption edges and peak positions upon PbS concentrations have been observed. These phenomena provide evidences that PbS clusters have been formed within the zeolite. The absorption spectra show featureless structure and have no tails near the absorption edges. As the PbS loading density becomes higher, the absorption bands become stronger and sharpen. Order PbS clusters lattice with high quality might be formed in the supercages of zeolite-Y. (C) 1996 American Institute of Physics.
Resumo:
Lattice matched Ga_(1-x)In_xAs_ySb_(1-y) quaternary alloy films for thermophotovoltaic cells were successfully grown on n-type GaSb substrates by liquid phase epitaxy. Mirror-like surfaces for the epitaxial layers were achieved and evaluated by atomic force microscopy. The composition of the Ga_(1-x)In_xAs_ySb_(1-y) layer was characterized by energy dispersive X-ray analysis with the result that x = 0.2, y = 0.17. The absorption edges of the Ga_(1-x)In_xAs_ySb_(1-y) films were determined to be 2. 256μm at room temperature by Fourier transform infrared transmission spectrum analysis, corresponding to an energy gap of 0.55eV. Hall measurements show that the highest obtained electron mobility in the undoped p-type samples is 512cm2~/(V·s) and the carrier density is 6. 1×10~(16)cm~(-3) at room temperature. Finally, GaInAsSb based thermophotovoltaic cells in different structures with quantum efficiency values of around 60% were fabricated and the spectrum response characteristics of the cells are discussed.