141 resultados para Vietnam, Northern
Resumo:
Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000-2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
瓦氏阿猎蝽Agyrius watanabeorum 为日本半翅目学者石川忠2002 年根据采自泰国北部的标本所命 名,其描记较为详细,配有正模的整体黑白照片和部分特征图,但对该种的阳茎结构没有提及。在研 究中国和越南的猎蝽时,我们发现了该种。本文中我们重新描述了瓦氏阿猎蝽,绘制了较详细的整体 图和局部特征图。阿猎蝽属Agyrius Stål, 1863 为中国和越南的新记录属,瓦氏阿猎蝽Agyrius watanabeorum Ishikawa, 2002 为中国和越南的新记录种;其在中国和越南的分布也是该属种最北的分布 记录。
Resumo:
In order to study the differentiation of Asian colobines, 14 variables measured on 123 skulls, including Rhinopithecus, Presbytis, Presbytiscus (Rhinopithecus avunculus), Pygathrix and Nasalis were analyzed by one-way, cluster and discriminant function analyses. Information on paleoenvironmental changes in China and southeast Asia since the late Tertiary was used to examine the influences of migratory routes and range of distribution in Asian colobines. A cladogram for 6 genera of Asian colobines was constructed from the results of various analyses. Some new points or revisions were suggested: (1) Following one of two migratory routes, ancient species of Asian colobines perhaps passed through Xizang (Tibet) along the northern bank of the Tethys sea and through the Heng Duan Shan regions of Yunnan into Vietnam. An ancient landmass linking Yunnan and Xizang was already present on the east bank of the Tethys sea. Accordingly, Asian colobines would have two centers of evolutionary origin: Sundaland and the Heng Duan Shan regions of China. (2) Pygathrix shares more cranial features with Presbytiscus than with Rhinopithecus. This differs somewhat from the conclusion reached by Groves. (3) Nasalis (karyotype: 2n = 48) may be the most primitive genus among Asian colobines. Certain features shared with Rhinopithecus, e.g. large body size, terrestrial activity and limb proportions, can be interpreted as symple-siomorphic characters. (4) Rhinopithecus, with respect to craniofacial features, is a special case among Asian colobines. It combines a high degree of evolutionary specialization with retention of some primitive features thought to have been present in the ancestral Asian colobine.
Resumo:
Generally it has not been recognized that salamanders of two distinctive color morphs currently are assigned to Tylototriton verrucosus Anderson. One form is uniformly dark brown dorsally, with bright orange coloration confined to the ventral edge of the tail; the other has a dark brown to black dorsal ground color with orange dorsolateral warts, an orange vertebral crest, and orange lateral and medial crests on the head. In addition, the limbs and ventrolateral surfaces of the second form have a variable pattern of orange coloration. The brown form occurs in northeastern India, Nepal, northern Burma, Bhutan, northern Thailand, the type locality in extreme western Yunnan, and perhaps in northern Vietnam. The orange-patterned form occurs only in western Yunnan Province, People's Republic of China. The two forms appear to be allopatric but occur close together in the area of the type locality near the Burma border in western Yunnan. There is no evidence of color intergradation in specimens from this region. Analyses of morphometric and meristic characters, however, suggest the possibility of limited genetic exchange between adjacent populations of brown and orange-patterned forms in western Yunnan. The genetic and taxonomic relationships between the two forms is not fully resolved. However, these two highly distinctive forms obviously have evolved along independent trajectories and merit taxonomic recognition. We therefore propose to restrict the concept of Tylototriton verrucosus to the brown form and designate a neotype for that purpose, and we describe a new species to receive the orange-patterned form.
Resumo:
Scattered with numerous salt lakes and approximate to 2,700-3,200 m above sea level, the giant Qaidam inland basin on the northern Tibetan Plateau has experienced continuing aridification since the beginning of the Late Cenozoic as a result of the India-Asia plate collision and associated uplift of the Tibetan Plateau. Previous evidence of aridification comes mainly from evaporite deposits and salinity-tolerant invertebrate fossils. Vertebrate fossils were rare until recent discoveries of abundant fish. Here, we report an unusual cyprinid fish, Hsianwenia wui, gen. et sp. nov., from Pliocene lake deposits of the Qaidam Basin, characterized by an extraordinarily thick skeleton that occupied almost the entire body. Such enormous skeletal thickening, apparently leaving little room for muscles, is unknown among extant fish. However, an almost identical condition occurs in the much smaller cyprinodontid Aphanius crassicaudus (Cyprinodonyiformes), collected from evaporites exposed along the northern margins of the Mediterranean Sea during the Messinian desiccation period. H. wui and A. crassicaudus both occur in similar deposits rich in carbonates (CaCO3) and sulfates (CaSO4), indicating that both were adapted to the extreme conditions resulting from the ariclification in the two areas. The overall skeletal thickening was most likely formed through deposition of the oversaturated calcium and was apparently a normal feature of the biology and growth of these fish.
Resumo:
The taxonomic problem of the cyprinid species of genus Spinibarbus, occurring in southern China and northern Vietnam, was resolved on the basis of molecular and morphological analyses. Spinibarbus caldwelli and Spinibarbus hollandi have a smooth posterior edge of the last unbranched dorsal fin ray among species in the genus. Spinibarbus caldwelli is currently regarded as a junior synonym of S. hollandi because of ambiguities in diagnostic characters. In this article, 11 mtDNA cytochrome b sequences of Spinibarbus specimens were analyzed together with Barbodes gonionotus and Puntius conchonius as outgroups. Our results showed that specimens identified as S. hollandi from Taiwan were different from those from the Asian mainland at a high level of genetic divergence (0.097-0.112), which is higher than that between the two valid species, S. sinensis and S. yunnanensis ( 0.089), and suggested that Taiwan specimens should be considered as a different species from the Asian mainland one. In a molecular phylogenetic analysis, the sister-group relationship between Taiwan specimens and the Asian mainland specimens was supported strongly by a high confidence level ( 100% in bootstrap value). Further analysis of morphological characters showed that overlap of diagnostic characters is much weaker than previously suggested. Taiwan specimens had 8 branched rays in the dorsal fin, whereas those from the mainland had almost 9-10. The molecular and morphological differences suggest S. caldwelli to be valid. The molecular divergence shows the genetic speciation of S. hollandi and S. caldwelli might have occurred 5.6-4.9 million years ago; the former could be a relict species in Taiwan, and the latter dispersed in the Asian mainland.
Resumo:
Based on the comprehensive interpretation and study of the Neogene fracture system and diapiric structure, it can be concluded that the diapiric structures, high-angle fractures and vertical fissure system are the main gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, northern South China Sea. The Neogene fractures widely developed in the study area may be classed into two groups: NW (NNW)-trending and NE (NNE)-trending. The first group was active in the Late Miocene, while the second one was active since the Pliocene. The NE (NNE)-trending fractures were characterized by lower activity strength and larger scale, and cut through the sediment layers deposited since the Pliocene. Within the top sediment layers, the high-angle fracture and vertical fissure system was developed. The diapiric structures display various types such as a turtle-back-like arch, weak piercing, gas chimney, and fracture (or crack, fissure). On the seismic profile, some diapiric structures show the vertical chimney pathway whose top is narrow and the bottom is wide, where some ones extend horizontally into pocket or flower-shaped structures and formed the seismic reflection chaotic zones. Within the overlying sediment layers of the diapiric structure, the tree branch, flower-shaped high-angle fractures and vertical fissures were developed and became the pathway and migration system of the gas-bearing fluid influx. In the study area, the diapiric structures indicate a high temperature/over pressure system ever developed. Closely associated and abundant bright-spots show the methane-bearing fluid influx migrated vertically or horizontally through the diapiric structures, high-angle fractures and vertical fissures. In the place where the temperature and pressure conditions were favor for the formation of gas hydrate, the hydrate reservoir deposition sub-system was developed.