51 resultados para VISCOELASTIC SHEAR PROPERTIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three series of MBS core-shell impact modifiers were prepared by grafting styrene and methyl methacrylate onto PB or SBR seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and MMA/Bd/St equals 30/42/28, which is a prerequisite for producing transparent blends with PVC. Under this composition, there were three different ways of arrangement for styrene in MBS, which led to the different structure of MBS modifier. The concentration of MBS in PVC/MBS blends was kept at a constant value of 20 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PVC/MBS blends were studied. The notched Izod impact test results showed that the MBS with a PB homopolymer core grafted with St had a lowest brittle-ductile transition (BDT) temperature and BDT temperature increased with the amount of St copolymerized with Bd in the core of MBS. The transparency of blends also increased with the amount of St copolymerized with Bd in the core. TEM results showed that the arrangement of St in MBS influenced the deformation behavior. Two deformation modes were observed in the blends: cavitation and shear yielding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3-trifluoro-methylbenzene side group (F-PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK-rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G' is larger than dynamic loss modulus G", showing the feature of elastic fluid. For F-PAEK-rich systems, the rheological behavior of the blends has a resemblance to pure F-PAEK, i.e., G" is greater than G', showing the characteristic of viscous fluid. When the PEEK content is in the range of 50-70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F-PAEK content. However, at 50% weight fraction of PEEK, the viscosity-composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nylon 11 (PA11)/clay nanocomposites have been prepared by melt-blending, followed by melt-extrusion through a capillary. Transmission electron n-Licroscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler loading. Melt rheological properties of PA11 nanocomposites have been studied in both linear and nonlinear viscoelastic response regions. In the linear regime, the nanocomposites exhibit much higher storage modulus (G') and loss modulus (G") values than neat PAIL The values of G' and G" increase steadily with clay loading at low concentrations, while the G' and G" for the sample with 5 wt % clay show an inverse dependence and lie between the modulus values of the samples with 1 and 2 wt % of clay. This is attributed to the alignment/orientation of nanoclay platelets in the intercalated nanocomposite induced by capillary extrusion. In the nonlinear regime, the nanocomposites show increased shear viscosities when compared with the neat resin. The dependence of the shear viscosity on clay loading has analogous trend to that of G' and G".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesomorphic properties of a side chain liquid crystalline polyacetylene, poly(11-{[(4'-heptyloxy-4-biphenylyl)carbonyl]oxy}-1-undecyne) (PA9EO7), are investigated using polarized optical microscope, X-ray diffraction, and transmission electron microscope. Polymer PA9EO7 forms enantiotropic smectic A and smectic B phases. It also exhibits an additional high order smectic phase, a sandwich structure consisting of different molecular packing of biphenyl mesogenic moieties from that of alkyl spacers and terminals, when it is prepared from its toluene solution. Shearing the polymer film at its smectic A phase generates banded texture with the alignment of the backbones parallel to the direction of shear force. While at its high order smectic phase, the mesogen pendants of the polymer are arranged parallel to the direction of shear. The different mesomorphic behaviors arise from different molecular alignments influenced by the fluidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to use the Palierne emulsion type model to describe the relationship between the rheological response to small amplitude oscillatory deformation and morphology of polypropylene/polyamide 6 (PP/PA6) blends compatibilized with maleic anhydride grafted polypropylene (PP-g-MAH). It was found that the Palierne emulsion type model could describe very well the linear viscoelastic responses of binary uncompatibilized PP/PA6 blends and failed to describe the ternary compatibilized PP/PP-g-MAH/PA6 blends. These features could be attributed to the fact that the morphology of the ternary blends was not of the emulsion type with the PA6 particles dispersed in the PP matrix but of an emulsion-in-emulsion type, i.e., PA6 particles dispersed in the PP matrix themselves contained PP or PP-g-MAH inclusions. By consideration of PP-in-PA6 particles as pure PA6 particles, where the volume fraction of the PA6 phase was increased accordingly, the Palierne emulsion type model could work very well for a ternary blending system. Preshear at low frequencies modified the morphology of both binary and ternary blends. The particles of the dispersed phase (PA6) became more uniform. These results suggested that the Palierne emulsion type model could be used to extract information on rheological properties and interfacial tension of polymer blends from known morphology and vice versa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of the novel engineering thermoplastic phenophthalein poly(ether ether ketone) (PEK-C) have been investigated using both a rotational and a capillary rheometer. The dependence of the viscosity on the shear rate and temperature was obtained. The activation energy was evaluated both from the Arrhenius and the Williams-Landel-Ferry (WLF) equation. An estimate for the proper E(eta) (dependent only on the chemical structure of the polymer) has been found from the WLF equation at temperatures about T-g + 200 degrees C. Measurements of the die swell have been performed. The first normal stress differences were evaluated from the die swell results and compared with the values obtained from the rotational rheometer at low shear rates.