58 resultados para V2O5
Resumo:
A novel process of room temperature ion beam sputtering deposition of vanadium oxide films and low temperature post annealing for uncooled infrared detectors was proposed in this work. VOx thin films with relatively low square resistance (70 K Omega / square) and large temperature coefficient of resistance (more than 3%/K) at room temperature were fabricated using this low temperature process which was very compatible with the process of uncooled infrared detectors based on micromachined technology. Furthermore, chemical composition and film surface have been characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results showed that the main composition of the processed thin films was V2O5 and the thin films were in the process of crystallization.
Resumo:
酸催化剂可以用来催化烃类裂解、重整、异构、烯烃水和、烷基化和酯化等重要化学反应,在石油炼制和石油化工领域有极其广泛的应用。与传统液体酸相比,新型固体酸催化剂具有容易与反应物和产物分离、易再生、不腐蚀反应器、环境污染少等优点,因此研究开发环境友好的新型固体酸催化剂成为国际上催化领域研究的热点。本论文研究新型固体酸催化剂的酸强度和延长催化剂使用寿命的方法,具有很高的工业实用价值和理论意义。 研究了固体酸催化剂在正己烷异构化和异丁醇脱水这两个反应的催化活性,结果显示:1)复合超强酸催化剂,2)Hβ及其负载催化剂,3)负载杂多酸,4)ZrO2·Bi2O3、ZrO2·CaO四类催化剂酸强度较高且强度大小为:1>2≈3>4。氢溢流的引入提高了Pt-SO42-/ ZrO2催化剂在反应中的催化活性,一定程度上弥补了酸强度的不足,也使一些原本没活性的催化剂有了一定的活性,如MOO3催化剂。 研究了异丁烷在12wt%V2O5/γ-Al2O3催化剂上脱氢制异丁烯的反应和异丁烯在50wt%HSiW/SiO2、Amberlyst-15和Amberlyst-35树脂催化剂上的迭代反应,均获得了较好的催化活性。 首次将催化剂表面的疏油性应用在酸催化领域,在硅胶负载的钨硅酸中掺杂不同含量聚四氟乙烯制备出具有一定疏油性的催化剂,用异丁烯迭代反应作为探针反应着重研究了催化剂表面的适当疏油性对催化剂的寿命和产物选择性的影响。结果显示催化剂表面的疏油性不仅提高了C8 =的选择性并且有效延长催化剂寿命。这主要是由于催化剂表面具有适当的疏油性,反应的中间产物C8=易于从具有疏油性的表面脱附,减少了C8=继续在催化剂表面进行连续反应生成C12=和C16=的机会,因此提高了C8=的选择性。这可能促进了更高的产物选择性,低的积炭量和较长的催化剂使用寿命。 研究了催化剂表面的疏水疏油性在醋酸与正丁醇的酯化反应中的应用。结果显示,当酯化反应产物为液相时,催化剂表面的疏水疏油性非常有利于产物从催化剂表面脱附,能有效提高正丁醇的转化率。 关键词:酸强度,钨硅酸,聚四氟乙烯,疏油性,寿命
Resumo:
近几十年来,有机半导体材料作为新一代的信息功能材料正以其光电性能优异、生产成本低廉、加工工艺简单、选材范围宽广、机械性能柔软等显著的优点,吸引了世界范围内的目光,成为越来越多研究机构竞相研究和开发的对象,被广泛应用于发光二极管、薄膜晶体管、太阳能电池、存储器等光电子器件中。这些有机半导体器件的应用前景十分广阔,其巨大的商业价值极大地推动了有机半导体器件的发展。 本论文主要制备了N型金属基极有机晶体管,并对其性能进行了研究和分析,并在此基础上,研究了其在有机发光驱动中的应用。 (1) 用N型有机半导体材料Alq3、F16CuPc和BAlq3作发射极层,Au作为基极,N型硅作为收集极层,Al作为发射极接触电极成功地制备出了一系列N型无机/有机杂化金属基极晶体管,这些器件都表现出了良好的共基极增益特性,最大共基极增益达到了0.991,接近理想值1。在此基础上,通过在发射极层和发射极电极之间引入V2O5界面修饰层,还实现了具有良好共发射极特性的N型无机/有机杂化金属基极晶体管。研究发现,V2O5界面修饰层的引入明显地减小了共基极漏电流,使器件的共基极特性得到了进一步的改善,同时也使器件表现了共发射极特性,实现了电流的放大,我们已经把共基极特性的改善和共发射极特性的实现归功于界面修饰层的引入提高了电子注入的结果。 (2) 根据金属与半导体的接触理论,设计制备出了带有Au/Al双层金属基极的N型无机/有机杂化金属基极晶体管。由于Al和Alq3之间好的接触特性和有效的从Al到Alq3的空穴阻挡特性以及Au和Si之间良好的肖特基接触特性,大大降低了器件的漏电流,使器件在低的电压下表现了优异的共基极和共发射极特性,共基极增益达到了近似理想值1,最大共发射机增益达到了4000,克服了单层金属基极晶体管难实现共发射极特性的问题,为实现高性能金属基极晶体管提供了新的思路。 (3) 利用异质结的概念,设计制备出了带有BAlq3/Alq3异质结结构的N型无机/有机杂化金属基极晶体管,该器件同样表现了优异的共基极和共发射极特性。研究发现,同Alq3单发射极层结构的金属基极晶体管相比,BAlq3/Alq3异质结发射极层的使用进一步降低了器件的漏电流,使器件在相同的电压下表现了更高的输出电流和更高的共发射极增益,为进一步实现高性能金属基极晶体管提供了新的方法。 (4) 用有机半导体材料取代无机高掺杂硅作为收集极层,制备出了带有Al单层金属基极和Au/Al双层金属基极的N型垂直结构全有机金属基极晶体管,该器件表现出了良好的共基极特性和共发射极特性。研究表明,全有机金属基极晶体管表现了和无机/有机混合型金属基极晶体管相似的特性,其从本质上说也是一种渗透型金属基极晶体管。 (5) 实现了金属基极有机晶体管驱动有机发光二极管的集成器件。利用金属基极有机晶体管的共发射极电流放大特性,在基极输入电流IB量级比较低(uA)的情况下,得到了较大量级(mA)的输出电流IC,从而实现了对白光有机发光二极管的驱动,在基极输入电流IB为1×10-5A时有机发光二极管的亮度达到了1279 cd/m2。
Resumo:
Ni - V - O series catalysts for the oxidative dehydrogenation (ODH) of propane were prepared and characterized by BET, XRD, H-2- TPR, O-2-TPD-MS and electrical conductivity. At 425 degreesC a C3H6 selectivity of 49.9% was observed on Ni0.9V0.1OY at a C3H8 conversion of 19.4%, and the obtained selectivity is almost two times higher than that over NiO at the roughly same conversion of C3H8. The mobile oxygen species created by the interaction of NiO and V2O5 has been found in the composite catalysts by O-2-TPD-MS and electrical conductivity studies, which seems to be responsible for the enhanced selectivity of the propane oxidative dehydrogenation.
Resumo:
We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage.
Resumo:
A dense clad overlay with chemical inertness was achieved on top of the plasma-sprayed YSZ thermal barrier coatings by laser in order to protect them from hot-corrosion attack. The Al2O3-clad YSZ coating exhibited good hot-corrosion behavior in contact with salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) for a longtime of 100 h at 1173 K. The LaPO4-clad YSZ coating showed corrosion resistance inferior to the Al2O3-clad one. Yttria was leached from YSZ by reaction between Y2O3 and V2O5, which caused progressive destabilization transformation of YSZ from tetragonal (t) to monoclinic (m) phase. The chemical inertness of the clad layers and the restrained infiltration of the molten corrosive salts by the dense clad layers were primary contributions to improvement of the hot-corrosion resistances.
Resumo:
We report the electrical characterization of hybrid permeable-base transistors with tris(8-hydroxyquinoline) aluminum as emitter layer. These transistors were constructed presenting an Al/n-Si/Au/Alq(3)/V2O5/Al structure. We investigate the influence of the V2O5 layer thickness and demonstrate that these devices present high common-base and common-emitter current gain, and can be operated at very low driving voltages, lower than 1 V, in both, common-base and common-emitter modes.
Resumo:
A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.
Resumo:
Stacked organic light-emitting devices (OLEDs) based on a europium complex Eu(TTA)(3) (Tmphen) (TTA = thenoyltrifluoroacetone,Tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were fabricated. In this stacked OLEDs, Li:BCP/V2O5 was used the intermediate charge generation layer sandwiched between two identical emissive units consisting of TPD/CBP:DCJTB:Eu(TTA)(3)(Tmphen)/BCP. As expected, the brightness and electroluminescent (EL) current efficiency were approximately enhanced by double times that of conventional single-unit devices. The stacked OLEDs showed the maximum luminance up to 3000 cd/m(2) at a current density of 190 mA/cm(2) and a current efficiency of 14.5 cd/A at a current density of 0.08 mA/cm(2). At the brightness of 100 cd/m(2), the current efficiency reached 10 cd/A at a current density of 1.6 mA/cm2.
Resumo:
We demonstrate high efficiency red organic light-emitting diodes (OLEDs) based on a planar microcavity comprised of a dielectric mirror and a metal Mirror. The microcavity devices emitted red light at a peak wavelength of 610 nm with a full width at half maximum (FWHM) of 25 nm in the forward direction, and an enhancement of about 1.3 factor in electroluminescent (EL) efficiency has been experimentally achieved with respect to the conventional noncavity devices. For microcavity devices with the structure of distributed Bragg reflectors (DBR)/indium-tin-oxide(ITO)/V2O5/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine(NPB)/4-(dicy-anome-thylene)-2-t-butyl-6(1,1,7,7-tetrame-thyljulolidyl-9-enyl)-4H-pyran(DCJTB):tris(8-hydroxyquinoline) aluminium (Alq(3))/Alq(3)/LiF/Al, the maximum brightness arrived at 37000 cd/m(2) at a current density of 460.0 mA/cm(2), and the current efficiency and power efficiency reach 13.7 cd/A at a current density of 0.23 mA/cm(2) and 13.3 lm/W respectively.
Resumo:
A new bimetallic cluster complex with the formula [{Co(phen)(2)}(2)V4O12](H2O)-H-. was synthesized from the hydrothermal reaction of V2O5, H2C2O4, Co(NO3)(2), 1,10-phenanthroline (phen), (C4H9)(4)NOH and water. The compound crystallizes in an orthorhombic system with space group Pbcn and unit cell parameters a = 19.106(3) Angstrom, b = 15.250(3) Angstrom, c = 16.321(2) Angstrom, V = 4755.4(13) Angstrom(3), Z = 4 and R = 0.0318. The bimetallic cluster complex [{Co(phen)(2)}(2)V4O12](H2O)-H-. is composed of a discrete V4O124- cluster eovalently attached to two [Co(phen)(2)](2+) fragments and the discrete hexanuclear bimetallic clusters of [{Co(phen)(2)}(V4O12)-V-2](H2O)-H-. are further extended into interesting three-dimensional supermolecular arrays via pi-pi stacking interactions of phen groups. Other characterizations by elemental analysis, IR, and thermal analysis are also described.
Resumo:
The partial oxidation of methane with molecular oxygen was performed on Fe-Mo/SiO2 catalysts. Iron was loaded on the Mo/SiO2 catalyst by chemical vapor deposition of Fe-3(CO)(12). The catalyst showed good low-temperature activities at 723-823 K. Formaldehyde was a major condensable liquid product on the prepared catalyst. There were synergistic effects between iron and molybdenum in Fe-Mo/SiO2 catalysts for the production of formaldehyde from the methane partial oxidation. The activation energy of Mo/SiO2 decreased with the addition of iron and approached that of the Fe/SiO2. The concentration of isolated molybdenum species (the peak at 1148 K in TPR experiments) decreased as the ion concentration increased and had a linear relationship with the selectivity of methane to formaldehyde. The role of Fe and Mo in the Fe-Mo/SiO2 catalyst was proposed: Fe is the center for the C-H activation to generate reaction intermediates, and Mo is the one for the transformation of intermediates into formaldehyde. Those phenomena were predominant below 775 K.
Resumo:
Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.