101 resultados para UNIT CELL VARIATIONS
Resumo:
A new bimetallic cluster complex with the formula [{Co(phen)(2)}(2)V4O12](H2O)-H-. was synthesized from the hydrothermal reaction of V2O5, H2C2O4, Co(NO3)(2), 1,10-phenanthroline (phen), (C4H9)(4)NOH and water. The compound crystallizes in an orthorhombic system with space group Pbcn and unit cell parameters a = 19.106(3) Angstrom, b = 15.250(3) Angstrom, c = 16.321(2) Angstrom, V = 4755.4(13) Angstrom(3), Z = 4 and R = 0.0318. The bimetallic cluster complex [{Co(phen)(2)}(2)V4O12](H2O)-H-. is composed of a discrete V4O124- cluster eovalently attached to two [Co(phen)(2)](2+) fragments and the discrete hexanuclear bimetallic clusters of [{Co(phen)(2)}(V4O12)-V-2](H2O)-H-. are further extended into interesting three-dimensional supermolecular arrays via pi-pi stacking interactions of phen groups. Other characterizations by elemental analysis, IR, and thermal analysis are also described.
Resumo:
The title heteropoly blue, (Bu4N)(6)H-10 [(PMo11MoO40)-Mo-VI-O-V](4) . H2O has been photochemically synthesized and characterized with elemental analysis, solid diffusion reflectance electronic spectra, CV, ESR, XPS, IR spectra, conductivity measurement and X-ray single crystal analysis. The crystallographic data for C96H218Mo48N6O169P4 are as follows: M-r = 8889.76, triclinic, P (1) over bar, a = 1.4142 (3) nm, b = 2.6027 (5) nm, c = 2.6403(5) nm, alpha = 113.96(3)degrees, beta = 90.05(3)degrees, gamma = 105.71(3)degrees, V = 8.481 (3) nm(3), Z = 1, D-c = 1.741 g/cm(3), F (000) = 4264, mu = 1.798 mm(-1). The X-ray crystal structure analysis reveals that there Is one independent molecule in the unit cell of the title heteropoly blue which contains four mixed-valence heteropoly anions, six tetrabutylammonium cations and one water molecule. Its molecular structure possesses a centrosymmetrical arrangement in the unit cell. The phosphorus atom is In the crystallographic inversion center of the heteropoly anion and the eight oxygen atoms surrounding central phosphorus atom comprise of a distorted hexahedron. Heteropolyanion has two equal sets of PO4 tetrahedron. The PO4 tetrahedron and the MoO6 octahedron in the polyanion are greatly distorted.
Resumo:
Rare earth complex (C5H9C9H6)(3)SmCl-Li+ (THF)(4)( I ) was synthesized by reacting anhydrous SmCl3 with two equivalents of C5H9C9H6Li. From mix-solvent of THF and hexane, red color single crystals were obtained. The crystal belongs to a cubic system, space group P2(1)3 with unit cell parameters a= b=c= 1. 754 0(2) nm, alpha=beta=gamma=90degrees, V=5. 396 4(11) nm(3), Z = 4. The ten-coordinated samarium atom is bonded to three cyclopentylindenyl rings and a chlorine atom to form the anionic part of the title complex, ring centroids and the chlorine atom form a tortured tetrahedron around samarium. In the cationic part, lithium atom coordinates to four oxygen atoms of THF molecules to form a normal tetrahedron. The Sm-C(within the same ring) distance varies from 0. 268 to 0. 299 nm.
Resumo:
(C5H9C5H4)(3)NdBrLi(THF)(4)(1)(C5H9=cyclopentyl) was obtained from the reaction of NdCl3 with C5H9C5H4Na and LiBr (Nd:Na:Li=1:2:1 molar ratio) in THE X-ray crystallography showed that the ten-coordinated neodymium atom is bonded to three cyclopentylcyclopentadienyl(eta(5)) rings and a single bromine atom bridging a lithium which is bonded to three THF molecules. Complex 1 is triclinic, P1 space group with unit dimensions of a= 12.048(2), b= 13.498(3), c= 13.831(3)Angstrom, a = 104.16(3), beta = 104.07(3), gamma =95.96(3)degrees, V=2083.3(7)Angstrom(3), Z=2, D-c=1.35Mg/m(3) and F(000)=874. (C5H9C5H4)(3)SmTHF (2) was synthesized by reaction of anhydrous SmCl3 with C5H9C5H4Na at a molar ratio of 1:3. The structure was determined by X-ray crystallography. The ten-coordinated samarium atom is bonded to three cycloperrtylcyclopentadienyl rings and one oxygen of THF molecule to form a pseudo-tetrahedron. Complex 2 is orthorhombic, Fdd2 space group with unit cell dimensions of a =28.175(5)Angstrom, b =46.24(2) Angstrom, c =9.167(4) Angstrom(3), V=11943(8)Angstrom(3), Z= 16, D-c = 1.38Mg/m(3) and F(000)=5136.
Resumo:
Crystal structure of a novel aryl ether ketone polymer poly(aryl ether ketone ether ketone ketone containing meta-phenyl linkage)(PEKEKmK) was determined by means of WAXD and ED. An orthorhombic unit cell is proposed containing two chains with a=0.772 nm, b=0.604 nm and c=2.572 nm. According to the orthorhombic system, the 10 reflections of this polymer were indexed.
Resumo:
The title compound, [C12H24O6][H3PMo12O40]. 22H(2)O, was synthesized by the self-assembly of 18-crown-6 (abbreviated as C12H24O6 or 18C6) and H3PMo12O40 in the mixed solvent of CH3OH and CH3CN, and was characterized by IR, H-1 NMR and Xray diffraction for the first time. Crystal data: Triclinic, P (1) over bar, a = 13.428(3) Angstrom, b = 13.557(3)A, c = 14.642(3) Angstrom, a = 105.39(3)degrees, beta = 90.06(3)degrees, gamma = 119.56(5)degrees, V = 2207.5(8) Angstrom(3), Z = 1, R1 = 0.0719, wR2 = 0.1990. It has a disordered alpha-Keggin PMo12O403- anion, which contains the strong alternating short (mean 1.844 Angstrom) and long (mean 1.958 Angstrom) Mo-O-Mo bonds. In the unit cell, crown ethers and molybdophosphates are alternatively arranged in good order along c-axis. An oxonium ion is located at the center of a crown ether molecule., Oxonium ion interacts with 18C6 by the means of hydrogen bonds (mean 2.7771 Angstrom), which are electrostatic or resonant. The observations show the existence of [H3O(C12H24O6)](+) (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The title compound, [H3PMo12O40][CO(NH2)(2)](3). 5H(2)O, was synthesized and characterized by IR, C-13 NMR and X-ray diffraction. This is the first example of a urea-heteropoly acid species. Crystal data: monoclinic, C2/c, a = 17.790(4) Angstrom, b = 17.158(3) Angstrom, e = 25.512(5) Angstrom, beta = 100.65(3)degrees, V = 8514(3) Angstrom (3), Z = 6, R-1 = 0.0437, wR2 = 0. 1092. In the unit cell, the urea molecules occupy cavities in the polyoxometalate lattice ordered along b-axis. Water molecules occupy the space left by polyoxometalates, and urea. Polyoxometalate O atoms, the N atoms of urea and O atoms of water molecules are involved in hydrogen bonding. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The structures of single crystals of syndiotactic poly(butene-1) in form I, produced by thin-film growth, are studied by transmission electron microscopy and electron diffraction. Bright-field electron microscopy observation shows that the single crystal exhibits a regular rectangular shape with the long axis along its crystallographic b-axis. Electron diffraction results indicate an isochiral C-centered packing of a-fold helical chains in an orthorhombic unit cell corresponding to the C222(1) space group, according to the model proposed in the literature. The differences with the polymorphic behavior of syndiotactic polypropylene concerning the formation and the stability of the isochiral mode of packing are outlined.
Resumo:
The effects of CaCO3 on the crystallization behavior of polypropylene (PP) were studied by means of DSC and WAXD. The average sizes of the CaCO3 powders used were 0.1 mum (UC) and 0.5 mum (GC), respectively. The PP/CaCO3 composites at compositions of 1 phr and 10 phr were investigated. The results showed that the addition of CaCO3 reduced the supercooling, the rate of nucleation and the overall rate of crystallization (except for the 10 phr UC/PP sample). The crystallinity of PP was increased and the size distribution of the crystallites of alpha -PP; was: broadened. On the other hand,the crystallization rate of 10 phr UC/PP is 1.5 times higher than that of neat PP. It has an overall rate of crystallization 2 times as much as that of the neat PP and has the maximum crystallinity. The sizes of crystallites and the unit cell parameters of alpha -PP were varied by the addition of CaCO3. beta -PP was formed by addition of Ge and was not detected by addition of UC. The differences of crystallization behaviors of PP might be attributed to the combined effects of the content and size of CaCO3 filled.
Resumo:
Stretching a stacked sPP lamellar morphology at room temperature leads to a mechanical induced transformation from the (t(2)g(2))(2) (helical) into the (tttt) (zigzag) chain conformation of the polymer. The so prepared samples exhibit after annealing above 80 degreesC a thermal induced retransformation into the cell I and cell III crystal structure of the helical chain conformation. The mechanical induced chain conformational transformation as well as the thermal induced retransformation was studied by means of transmission electron microscopy and electron diffraction. (C) 2001 Kluwer Academic Publishers.
Resumo:
A new crystal modification induced by strain and denoted as form II exists alongside the dominant form I structure in the uniaxially oriented poly(ether ether ketone) (PEEK) and the related polymers. The crystal structure of form II for PEEK is also found to possess a two-chain orthorhombic packing with unit cell parameters of a equal to 0.475 nm, b equal to 1.060 nm, and c equal to 1.086 nm. More extended and flattened chain conformation of form II relative to that of form I is expected to account for an 8% increase in c-axis dimension, which is attributed to the extensional deformation fixed in situ through strain-induced crystallization during uniaxial drawing. Annealing experiments suggest that form II is thermodynamically metastable and can be transformed into more stable form I by chain relaxation and reorganization at elevated temperature without external tension. This strain-induced polymorphism exists universally in the poly(aryl ether ketone) family. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Experimental electron diffraction patterns and high resolution images were used to determine the space group and unit cell dimensions of 2,3,6,7,10,11-hexakispentyloxytriphenylene. Subsequently the molecular conformation was calculated by energy minimized package in Cerius2. Using this method, we got the HPT crystal structure: space group: P6/mmm; lattice type: hexogonal; the lattice parameters are a = b = 20.3 angstrom, c = 3.52 angstrom, = = 90 degrees, = 120 degrees. The core of HPT is not perpendicular to the column. The angle between a axis and HPT core plane is 9 degrees which cannot be seen in b-c projection. The simulated ED patterns and HREM images are good agreement with the experimental ED patterns and HREM images.
Resumo:
Blends of linear low-density polyethylene (LLDPE) and a diblock copolymer of hydrogenated polybutadiene and methyl methacrylate [P(HB-b-MMA)] were studied by transimission electron microscope (TEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD). At 10 wt% block copolymer content, block copolymer chains exist as spherical micelles and cylindrical micelles in LLDPE matrix. At 50 wt% block copolymer content, block copolymer chains mainly form cylindrical micelles. The core and corona of micelles consist of PMMA and PHB blocks, respectively. DSC results show that the total enthalpy of crystallization of the blends varies linearly with LLDPE weight percent, indicating no interactions in the crystalline phase. In the blends, no distortion of the unit cell is observed in WAXD tests.
Resumo:
Single chain and pauci chain single crystals of gutta percha in nanometer size were prepared by a dilute solution spraying method. A new crystal modification of gutta percha was found. The unit cell of the new modification of gutta percha was determined by electron diffraction crystal structure analysis to be a hexagonal form with cell dimensions: a = b = 0.695 nm, c = 0.661 nm, alpha = beta = 90 degrees, gamma =120 degrees; the space group is P6. The molecular packing in the unit cell was determined by computer modelling with Cerius(2) 2.0 software. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Crystallization behavior of syndiotactic polypropylene(sPP) on the (100) lattice plane of high-density polyethylene(HDPE) crystals was studied by means of transmission electron microscopy and electron diffraction. The results indicate that sPP crystals can grow epitaxially on the (100) PE lattice plane with their chain directions +/-37 degrees apart from the chain direction of the HDPE substrate. The contact planes are (100) lattice planes for both polymers. This kind of epitaxy is explained in terms of parallel alignment of HDPE chains along the rows formed by the {CH3, CH2,CH3} groups in the (100) lattice plane of the sPP crystals. This implies that in the epitaxial crystallization of sPP with fiber oriented HDPE substrate, not only the (110) but also the (100) HDPE lattice planes can act as the oriented nucleation sites. Furthermore, according to the poor matching between HDPE chains in the (100) lattice plane and the {CH3, CH2, CH3} group rows in the (100) lattice plane of the sPP crystals, it is concluded that the geometric matching is not the only controlling factor for the occurrence of polymer epitaxy.