195 resultados para Trace Metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

随着工农业生产的迅速发展,重金属污染问题越来越严重。由于重金属能 够在土壤、水体等环境中不断积累,并且通过食物链而进入人体内蓄积,因此对 人类健康构成潜在的危害。当人体内重金属含量过量时,会导致各种疾病的发生。 所以对痕量重金属污染物进行监测和分析,在食品安全、临床诊断和环境监测等 方面具有重要的现实意义。因此,研究快速、准确、灵敏、方便的检测重金属的 新方法十分必要。 近年来,化学修饰电极由于能够赋予电极新的、特定的功能,在提高电化 学选择性和灵敏度方面有着独特的优越性,因而成为电分析化学领域研究的热 点,并且被广泛应用于重金属元素的测定。但是,由于电极材料的限制,灵敏度 虽然有所改进,却始终很难达到一个新的高度。要提高化学修饰电极对重金属检 测的灵敏度,必须加入一些辅助的方法。 最近,纳米材料在很多分析方法中得到广泛应用,这些材料表现出很多它 们在常规尺度时所没有的独特的性质,如量子尺寸效应、表面效应、小尺寸效应、 量子隧道效应以及介电限域效应等。因此,作为一种新型的电极材料在电化学检 测和分析方面受到人们的日益关注。由于纳米材料本身具有大的比表面积和高的 表面自由能,这种纳米材料修饰电极的灵敏度得到大幅度提高。 离子载体是一类具有一个特定空腔的大环分子,能够从溶液中实现对某一 特定离子的萃取使之进入到有机相中。离子载体是电位型传感器敏感膜中的核心 成分,尽管它具有很高的选择性,但是除了电位分析外,在其它方面的用途却很 少被关注,可能是由于其本身的非导电性能所致。本论文采用纳米材料所特有的 对重金属离子强大的吸附性能和离子载体优良的选择性,制备了纳米材料及离子 载体修饰玻碳电极并用来对实际水样中痕量的重金属进行检测。主要内容包括以 下几个方面: 1.制备新型碳纳米管/铋膜复合修饰电极,研究了重金属钴在电极上的电化 学性能。结果表明,这种新型复合修饰电极的灵敏度得到显著提高,能实现最低 检测限为8´10-11 M的钴的吸附富集溶出。 2.利用羟基磷灰石的强吸附能力和碳纳米管的优异电化学性能,制备了新型 新型纳米材料及离子载体化学修饰电极的制备及其在痕量重金属污染物检测中的应用 II 的碳纳米管-纳米羟基磷灰石的双纳米复合材料,并将其用于金属镉的富集溶出。 结果表明,双纳米复合材料具有比单一材料更优异的性能,更有助于金属镉的富 集溶出。采用碳纳米管-纳米羟基磷灰石的双纳米复合材料修饰电极,能实现最 低检测限为4´10-9 M的镉的富集溶出,灵敏度得到明显提高。 3. 将导电性好、抗氧干扰能力强的铋膜与对重金属具有良好选择性的离子 载体相结合,制备了基于铋膜/离子载体的新型修饰电极,研究了金属铅在其表 面的富集溶出。结果表明,这种新型修饰电极的灵敏度和选择性都大为提高,具 有更高的溶出峰电流和更好的抗干扰能力,可以实现最低检测限为4.4´10-11 M 的铅的富集溶出。 4. 利用羟基磷灰石的强吸附能力和其三维多孔结构、离子载体对重金属离 子优异的选择性以及Nafion 膜良好的离子交换作用和化学稳定性,制备了基于 纳米材料和离子载体的新型化学修饰电极。这种方法不仅有助于提高对金属铅的 选择性和灵敏度,而且大大提高了富集效率。采用该新型化学修饰电极,能够实 现最低检测限为1´10-9 M的铅的富集溶出。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was carried out to investigate contamination of heavy metals in 19 fish species from the Banan section of Chongqing in the Three Gorges, Yangtze River. The results showed that the mean concentrations of heavy metals were higher in intestine than muscle, except zinc in upper strata. In the fish inhabiting the upper strata, there were significant differences between mean concentrations of As, Cr, Cu and Hg in muscle and intestine (P <0.05). There were also significant differences between mean concentrations of Cr and Cu in muscle and intestine in the fish inhabiting middle strata. However, significant differences between mean concentrations of As, Cd, Hg, Pb and Zn were measured in fish inhabiting bottom strata in both intestine and muscle tissues (P <0.05). For the fish inhabiting different strata, the concentrations of As, Cd, Cr, Cu, Hg and Ph in muscle and intestine of the fish from bottom strata (BS) were higher than those in both upper strata (US) and middle strata (MS); whereas a higher concentration of Zn was measured in muscle and intestine from fish inhabiting upper strata. Mean metal concentrations were found to be higher in age 11 than those in age I in Coreius heterodon (2- and 1-year odl fish respectively). The overall results indicated that fish muscle in the Banan section were slightly contaminated by heavy metals, but did not exceed Chinese food standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a novel method that applies pressure-assisted field-amplified sample injection with reverse migrating micelles (PA-FASI-RMM) for the online concentration of neutral analytes in MEKC with a low-pH BGE. After injection of a plug of water into the separation capillary, negative voltage and positive pressure were simultaneously applied to initialize PA-FASI-RMM injection. The hydrodynamic flow generated by the positive pressure compensated the reverse EOF in the water plug and allowed the water plug to remain in the capillary during FASI with reverse migrating micelles (FASI-RMM) to obtain a much longer injection time than usual, which improved stacking efficiency greatly. Equations describing this injection mode were introduced and were supported by experimental results. For a 450-s online PA-FASI-RMM injection, three orders of magnitude sample enhancement in terms of peak area could be observed for the steroids and an achievement of detection limits was between 1 and 10 ng/mL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ratio of methanol., water and trifluoroacetic acid ( TFA) was regulated to change the polarity and the pH of the rinse solution and the eluent, so as to improve the high performance liquid chromatography HPLC) detection method for trace microcystines (MCs) in natural water bodies. The results showed that 40 % similar to 45 % methanol-water solution containing 0. 1 % TFA could get good effects on the rinse of impurity, and 70% methanol-water solution containing 0. 1% TFA could elute all the MCs in solid phase extraction ( SPE) cartridge ( C-18), In this way. it is suggested that, in analysis of environmental samples with high concentration of impurity, impurity should be washed with 40% similar to 45% methanol-water solution containing 0. 1% TFA, and MCs should be eluted with 70% similar to 100% methanol-water solution containing 0. 1% TFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe-Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total and subcellular hepatic Zn, Cu, Se, Mn, V, Hg, Cd, and Ag were determined in a mother-fetus pair of Dall's porpoises (Phocoenoides dalli). Except for higher fetal Cu concentration, all maternal elements were higher. Elements existed mostly in the cytosol of both animals except in the case of maternal Ag in the microsome and fetal Cu and Ag in the nuclei and mitochondria. In the maternal cytosol, Zn, Mn, Hg, and Ag were present in the high-molecular-weight substances (HMW); Se and V were present in the low-molecular-weight substances (LMW); Cu and Cd were mostly sequestered by metallothionein (MT). In the fetal cytosol, Zn, Se, Mn, Hg, Cd, and Ag were present in the HMW and V in the LMW, while Cu and Ag were mostly associated with MT. MT isoforms were characterized using the HPLC/ICP-MS. Two and four obvious peaks appeared in the maternal and fetal MT fractions, respectively. The highest elemental ion intensities were at a retention time of 7.8 min for the mother, and for the fetus the peak elemental ion intensities occurred at a retention time of 4.3 min, suggesting that different MT isoforms may be involved in elemental accumulation in maternal and fetal hepatocytosols. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goal, Scope and Background. As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. Methods. The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. Results and Discussion. Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. Conclusions. There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. Recommendations and Outlook. To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentration of trace elements measured by dry weight basis has become more commonly used in recent studies on cetaceans than wet weight basis, which was used more in earlier studies. Because few authors present moisture content data in their papers, it is difficult to compare the concentrations of trace elements between various studies. Therefore, we felt that it would be useful if a reference conversion factor (CF) for tissue types could be found to convert between wet weight and dry weight data on trace element concentrations. We determined the moisture contents of 14 tissues of Dall's porpoise (Phocoenoides dalli), and then, calculated the CF values for those tissues. Because the moisture content of each tissue differs from other tissues, it is necessary to use a specific CIF for each tissue rather than a general CF for several tissues. We have also found that CIF values for Dall's porpoise tissues are similar to the same tissues in other cetaceans. Therefore CF values from Dall's porpoise can be reliably used to convert between wet and dry weight concentrations for other cetacean tissues as reference data. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A twin-shaped constructed wetland (CW) comprising a vertical flow (inflow) chamber with Cyperus alternifolius followed by a reverse-vertical flow (outflow) chamber with Villarsia exaltata was assessed for decontamination of artificial wastewater polluted by heavy metals. After application of Cd, Cu, Pb, Zn over 150 days, together with Al and Mn during the final 114 days, no heavy metals with the exception of Mn could be detected in either the drainage zone at the bottom, shared by both chambers, or in the effluent. The inflow chamber was, therefore, seen to be predominantly responsible for the decontamination process of more toxic metal species with final concentrations far below WHO drinking-water standards. About one-third of the applied Cu and Mn was absorbed, predominantly by lateral roots of C. alternifolius. Lower accumulation levels were observed for Zn (5%), Cd (6%), Al (13%). and Pb (14%). Contents of Cd, Cu, Mn, and Zn in soil were highest in top layer, while Al and Pb were evenly distributed through the whole soil column. Metal species accumulating mainly in the top layer can be removed mechanically. A vertical flow CW with C. alternifolius is an effective tool in phytoremediation for treatment of water polluted with heavy metals. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EQUILATERAL-TRIANGLE; MU-M; LASERS; MICROLASERS; MICRODISK Abstract: Mode characteristics for midinfrared microsquare resonators with sloped sidewalls and confined metal layers are investigated by finite-difference time-domain (FDTD) techniques. For a microsquare with a side length of 10 mu m, the mode quality (Q)-factors of 8329, 4772, and 2053 are obtained for TM5,7 mode at wavelength 7.1 mu m by three-dimensional FDTD simulations, as the tilting angles of the side walls are 90 degrees, 88 degrees, and 86 degrees, respectively. Furthermore, microsquare resonators laterally surrounded by SiO2 and metal layers are investigated by the two-dimensional FDTD technique for the metal layers of Au, Ti-Au, Ag-Au, and Ti-Ag-Au, respectively.