146 resultados para Time-dependent billiard
Resumo:
We provide an overview of the basic concepts of scaling and dimensional analysis, followed by a review of some of the recent work on applying these concepts to modeling instrumented indentation measurements. Specifically, we examine conical and pyramidal indentation in elastic-plastic solids with power-law work-hardening, in power-law creep solids, and in linear viscoelastic materials. We show that the scaling approach to indentation modeling provides new insights into several basic questions in instrumented indentation, including, what information is contained in the indentation load-displacement curves? How does hardness depend on the mechanical properties and indenter geometry? What are the factors determining piling-up and sinking-in of surface profiles around indents? Can stress-strain relationships be obtained from indentation load-displacement curves? How to measure time dependent mechanical properties from indentation? How to detect or confirm indentation size effects? The scaling approach also helps organize knowledge and provides a framework for bridging micro- and macroscales. We hope that this review will accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to materials scientists and engineers, and (2) providing a better understanding of instrumented indentation measurements.
Resumo:
Three-dimensional and time-dependent numerical simulations are performed For melt convection in horizontal Bridgman crystal growth tinder high gravity conditions by means of a centrifuge. The numerical results show that Coriolis Force can cause a stabilizing effect on the fluctuations of the melt flow under a specific relation direction and relation rates of the centrifuge as reported in previous experiments (Ma et al., Materials Processing in High Gravity, Plenum Press, New York, 1994, p. 61). The present simulation provides details of the now features associated with the effect of the Coriolis force. There are also some differences between the present three-dimensional and former two-dimensional numerical solutions particularly in the prediction of the critical conditions and flow patterns.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.
Resumo:
We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.
Resumo:
An analysis of the time-dependent resistive voltage and power deposition during the breakdown phase of pseudo-spark is presented. The voltage and current were measured by specially designed low-inductance capacitive voltage divider and current measuring resistor. The measured waveforms of voltage and current are digitized and processed by a computer program to remove the inductive component, so as to obtain resistive voltage and power deposition. The influence of pressure, cathode geometry and charging voltage of storage capacitors on the electrical properties in the breakdown phase are investigated. The results suggest that the breakdown phase of pseudo-spark consists of three stages. The first stage is mainly hollow cathode discharge. In the second stage, field-enhanced thermionic emission takes place, resulting in a fast voltage drop and sharp rise of discharge current. The third stage of discharge depends simply on the parameters of the discharge circuit.
Resumo:
A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.
Resumo:
The possibility of lifetime measurement in a flowing medium with phase fluorometry is investigated theoretically. A 3-D time dependent partial differential equation of the number density of atoms (or molecules) in the upper level of the fluorescence transition is solved analytically, taking flow, diffusion, optical excitation, decay, Doppler shift, and thickness of the excitation light sheet into account. An analytical expression of the intensity of the fluorescence signal in the flowing medium is deduced. Conditions are given, in which the principle of lifetime measurement with phase fluorometry in the static sample cell can be used in a flowing medium.
Resumo:
A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.
Resumo:
In this paper particular investigation is directed towards the combined effects of horizontal and vertical motions of real earthquakes to structures resting on sliding base. A simplified method is presented to treat the nonlinear effects of time dependent frictional force of the sliding base as a function of the vertical reaction produced by the foundation. As an example, the El Centro 1940 earthquake record is used on a structural model to show the structural responses due to a sliding base with different frictional and stiffness characteristics. The study shows that vertical ground motion does affect both the superstructure response and the base sliding displacement. Nevertheless, the sliding base isolator is shown to be effective for the reduction of seismic response of a superstructure.
Resumo:
In this paper we deduce the formulae for rate-constant of microreaction with high resolving power of energy from the time-dependent Schrdinger equation for the general case when there is a depression on the reaetional potential surface (when the depression is zero in depth, the case is reduced to that of Eyring). Based on the assumption that Bolzmann distribution is appropriate to the description of reactants, the formula for the constant of macrorate in a form similar to Eyring's is deduced and the expression for the coefficient of transmission is given. When there is no depression on the reactional potential surface and the coefficient of transmission does not seriously depend upon temperature, it is reduced to Eyring's. Thus Eyring's is a special case of the present work.
Resumo:
The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) and flow patterns in the two-layer system of silicon oil 10cSt and Fluorinert FC70 liquids are studied theoretically and experimentally. Both linear instability analysis and 2D numerical simulation (A=L/H=10) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. Time-dependent oscillations arising at the onset of convection were investigated in a larger various range of two-layer depth ratios (Hr=H1/H2) from 0.2 to 5.0 for different total depth less than 12mm. Our results are different from the previous study on the Rayleig-B閚ard instability and show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. Primary experimental results of the critical instability parameters and the convective structure in the R-M-B convection have been obtained by using the digital particle image velocimetry (DPIV) system, and a good agreement in comparison with the results of numerical simulation was obtained.
Resumo:
The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen's experimental observation with the previous linear stability analysis results of Renardy et al.
Resumo:
The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.
目录
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references
Resumo:
利用三维有限元方法对三峡升船机塔柱结构的动力学特性及随机地震响应进行了计算分析,结果表明塔柱结构柔度较大,其项部节点随机地震位移响应为中宽带过程.在此基础上,采用首次超越破坏机制,以塔柱结构顶部典型位置的位移限值为可靠度界限,对设计地震烈度下升船机塔柱结构的时变动力可靠度进行了计算分析,得到了塔柱结构设计基准期内的时变动力可靠度,并讨论了可靠度界限值的随机性对结构抗震时变可靠度计算结果的影响,建议升船机结构抗震可靠度计算模型采用Markov过程假定.该文可为升船机结构设计及安全运行提供必要的参考.