112 resultados para Technical solutions
Resumo:
The hydrodehalogenation of aromatic halides, catalyzed by Pd/C in aqueous solutions, yields arenes in short reaction times at room temperature under normal pressure. The nature of the solvents has an important influence on the reaction rates and the activity of the catalyst. The catalyst shows the highest activity in water. In the hydrodechlorination of 4-chlorohypnone, it was in water that C-Cl bond was easier to be hydrogenated, and in isopropanol that C=O was easier to be hydrogenated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Intra- and intermolecular relaxations of dye molecules are studied after the excitation to the high-lying excited states by a femtosecond laser pulse, using femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD). The biexponential decays indicate a rapid intramolecular vibrational redistribution (IVR) depopulation followed by a slower process, which was contributed by the energy transfer to the solvents and the solvation of the excited solutes. The time constants of IVR in both oxazine 750 and rhodamine 700 are at the 290-360 fs range, which are insensitive to the characters of solvents. The solvation of the excited solutes and the cooling of the hot solute molecules by collisional energy transfer to the surrounding takes place in the several picoseconds that strongly depend on the properties of solvents. The difference of Lewis basicity and states density of solvents is a possible reason to explain this solvent dependence. The more basic the solvent is, which means the more interaction between the solute and the neighboring solvent shell, the more rapid the intermolecular vibrational excess energy transfer from the solute to the surroundings and the solvation of the solutes are. The higher the states density of the solvent is, the more favorable the energy transfer between the solute and solvent molecules is.
Resumo:
Nanosized Ce1-xCuxOy materials were prepared by complexation-combustion method. The structural characteristics and redox behaviors were investigated using X-ray diffraction (XRD), temperature programmed reduction (H-2-TPR), UV-Vis, and Raman spectroscopies. In XRD patterns, no evidence of CuO diffraction peaks are observed for the Ce1-xCuxOy samples calcinated at 650 degreesC for 5 h, until the Cu/(Ce + Cu) ratio is higher than 0.4. The stepwise decrease of the 2theta value of CeO2 in Ce1-xCuxOy with the increasing of Cu concentration suggests that the CU2+ ions incorporate into the CeO2 lattice to form Ce1-xCuxOy solid solutions for low Cu/(Ce + Cu) ratios (x less than or equal to 0.1). The CuO phase begins to segregate from the solid solutions with the further increasing of Cu/(Ce+Cu) ratio. The Raman mode at 1176 cm(-1) ascribed to the enhanced defects appears for CeO2 and the Ce0.9Cu0.1Oy solid solution. Compared with CeO2 alone, the Raman mode of cubic CeO2 shifts from 462 to 443 cm(-1) for the Ce0.9Cu0.1Oy solid solution. The H-2 consumption of the fresh Ce0.95Cu0.05Oy is 1.65 times higher than that needed to reduce CuO to Cu, and it increases to 2.4 after a reoxidation of the partially reduced Ce0.95Cu0.05Oy at 300 degreesC, which indicates that the CeO2 phase is also extensively reduced. Compared with the high Cu/(Ce+Cu) ratio sample Ce0.7Cu0.3Oy, the Ce0.9Cu0.1Oy solid solution shows high and stable redox property even after different reoxidation temperatures. When the reoxidation temperature exceeds 200 degreesC, the a peak (similar to170 degreesC) ascribed to the reduction of surface oxygen disappears, and the P peak (similar to190 degreesC) ascribed to the reduction of Cu2+ species and the partial reduction of bulk CeO2 shifts to higher temperatures with the H-2 consumption 1.16 times higher than that for fresh sample. The result demonstrates that the redox property of the CeO2 is Significantly improved by forming the Ce1-xCuxOy solid solutions.
Resumo:
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+.
Resumo:
Synergistic extraction and recovery of Cerium(IV) (Ce(IV)) and Fluorin (F) from sulfuric solutions using mixture of Cyanex 923 and di-2-ethylhexyl phosphoric acid (D2EHPA) in n-heptane have been carried out. in order to investigate the synergistic extraction of Cyanex 923 + D2EHPA, extraction Ce(IV), F, Ce(III) and Ce-F mixture solution using D2EHPA or Cyanex 923 as extractant alone were studied firstly, and then Synergistic extraction of Ce(IV), F and Ce(IV)-F mixture solution with D2EHPA + Cyanex 923 were carried out. The largest synergistic coefficient of Ce(IV) is obtained at the mole fraction X-Cyanex (923) = 0.8. The synergistic enhancement coefficients (R-max) obtained for Ce(IV) are 23.12 in Ce(IV) solution, and in Ce-F mixed solution R-max for Ce(IV) and F are 2.24 and 3.25 respectively.
Resumo:
The extraction behavior of Ce(IV) along with Th(IV) and Ln(III) (Ln = Ce, Gd, Yb) nitrate by pure ionic liquid, [C(8)mim]PF6, was investigated. [C(8)mim]PF6 alone showed good extraction ability for Ce(IV), while it was slight for Th(IV) and negligible for Ln(III). The extraction behavior of Ce(IV) by [C(8)mim]PF6 was particularly studied, and the most probable extraction mechanism proposed was the anion exchange mechanism. Moreover, the stripping of Ce(IV) from IL phase was also investigated. The Ce(IV) in IL phase can be quantitatively recovered by water.
Resumo:
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+. The experimental data have been analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results showed that the biosorption equilibrium was well described by both the Langmuir and Redlich-Peterson isotherms.
Resumo:
The calculations presented in this paper are based on the Sanchez-Lacombe (SL) lattice fluid theory. The interaction energy parameter, g*(12)/k, required in this approach was obtained by fitting the cloud points of polystyrene (PS) /methyleyclohexane (MCH) polymer solutions under pressure. The SL lattice fluid theory was used to calculate the spinodals, the binodals, and the Flory-Huggins (FH) interaction parameter of the solutions. The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well. However, the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions. Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.
Resumo:
Monte Carlo simulation on the basis of the comblike coarse grained nonpolar/polar (NP) model has been carried out to study the polar group saturation effect on physical gelation of amphiphilic polymer solutions. The effects of polar group saturation due to hydrogen bonding or ion bridging on the sol-gel phase diagram, microstructure of aggregates, and chain conformation of amphiphilic polymer solutions under four different solvent conditions to either the nonpolar backbone or the polar side chain in amphiphilic polymer chains have been investigated. It is found that an increase of polar group saturation results in a monotonically decreased critical concentration of gelation point, which can be qualitatively supported by the dynamic theological measurements on pectin aqueous solutions. Furthermore, various solvent conditions to either the backbone or the side chain have significant impact on both chain conformation and microstructure of aggregates. When the solvent is repulsive to the nonpolar backbone but attractive to the polar side chain, the polymer chains are collapsed, and the gelation follows the mechanism of colloidal packing; at the other solvent conditions, the gelation follows the mechanism of random aggregation.
Resumo:
The high hydrogen evolution overpotential of a bismuth electrode makes it a powerful electrode for cathodic electro-chemiluminescence studies in aqueous solutions.
Resumo:
As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.
Resumo:
The Ce6-xYxMoO15-delta solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15-delta ranging from 5.9 X 10(-5)(S cm(-1)) at 300 degrees C to 1.3 X 10(-2)(S cm(-1)) at 650 degrees C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 degrees C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.
Resumo:
The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed.