51 resultados para Taylor vortex
Resumo:
Submerged floating tunnel (SFT) is a popular concept of crossing waterways. The failure of the cable may occur due to vortex-induced-vibration (VIV), and the stability of the cable is crucial to the safety of the entire tunnel. Investigation results in recent years show that the vortex-induced vibration of the flexible cables with large aspect ratio reveals some new phenomena, for example, the vortex-induced wave, multi-mode competition, wide band random vibration, which have brought new challenges to the study of vortex-induced vibration of long flexible cables. In this paper, the dimensionless parameter controlling the wave types of dynamic response of slender cables undergoing vortex-induced vibration is investigated by means of dimensional analysis and finite element numerical simulations. Our results indicate that there are three types of response for a slender cable, i.e. standing wave vibration, traveling wave vibration and intermediate state. Based on dimensional analysis the controlling parameter is found to be related to the system damping including fluid damping and structural damping, order number of the locked-in modes and the aspect ratio of cable. Furthermore through numerical simulations and parameter regression, the expression and the critical value of controlling parameter is presented. At last the physical meaning of the parameter is analyzed and discussed.
Resumo:
Based on improving the wake-oscillator model, an analytical model for vortex-induced vibration (VIV) of flexible riser under non-uniform current is presented, in which the variation of added mass at lock-in and the nonlinear relationship between amplitude of response and reduced velocity are considered. By means of empirical formula combining iteration computation, the improved analytical model can be conveniently programmed into computer code with simpler and faster computation process than CFD so as to be suitable to application of practical engineering. This model is validated by comparing with experimental result and numerical simulation. Our results show that the improved model can predict VIV response and lock-in region more accurately. At last, illustrative examples are given in which the amplitude of response of flexible riser experiencing VIV under action of non-uniform current is calculated and effects of riser tension and flow distribution along span of riser are explored. It is demonstrated that with the variation of tension and flow distribution, lock-in region of mode behaves in different way, and thus the final response is a synthesis of response of locked modes.
Resumo:
The mecha nism of destabilization is studied for the rotating vortices (scroll waves and spiral waves) in excitable media induced by a parameter modulation in the form of a travelling-wave. It is found that a rigid rotating spiral in the two-dimensional (2D) system undergoes asynchronized drift along a straightline, and a 3D scrolling with its filament closed into a circle can be reoriented only if the direction of wavenumber of a travelling-wave perturbation is parallel to the ring plane. Then, in order to describe the behaviour of the synchronized drift of spiral wave and the reorientation of scrollring, the approximate formulas are given to exhibit qualitative agreements with the observed results.
Resumo:
Based on current phi-mapping topological theory, a kind of self-dual equations in Jackiw-Pi model are studied. We first obtain explicit, self-dual solutions that satisfy Liouville equation which contains delta-function. Then we get perfect vortex solutions which reflect the system's internal topological structure, and consequently the quantization of flux.
Resumo:
By using phi-mapping method, we discuss the topological structure of the self-duality solution in Jackiw-Pi model in terms of gauge potential decomposition. We set up relationship between Chern-Simons vortex solution and topological number, which is determined by Hopf index and Brouwer degree. We also give the quantization of flux in this case. Then, we study the angular momentum of the vortex, which can be expressed in terms of the flux.
Resumo:
In this Letter, we study the generalized Ginzburg-Landau (GL) functional near the tricritical temperature, and obtain the vortex solution of the FFLO state. Furthermore, we investigate the structure of the vortex and find that the vortices shrink when the Zeeman effect is weaken or temperature is lowered. (C) 2010 Elsevier B.V. All rights reserved.