48 resultados para TRANSITION ELEMENTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two basic types of depolarization mechanisms, carrier-carrier (CC) and carrier-phonon (CP) scattering, are investigated in optically excited bulk semiconductors (3D), in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements. The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1 - cos chi), where chi are the scattering angles. Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach, and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations. These formulas, which reveal the trivial role of the Coulomb screening effect in the depolarization processes, are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the transverse relaxation time in optically excited semiconductor quantum wells is investigated based on the vector property of the interband transition matrix elements. The dephasing rate due to carrier-carrier (CC) scattering is found to be equal to half of the common momentum relaxation rate. The analytical expression of the polarization dephasing due to CC scattering in two-dimension is established and the dependence of the dephasing rate Gamma(cc) on the carrier density N is determined to be Gamma(cc) = constant (.) N-1/2, which is used to explain the experimental results and provides a promising physical picture. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper has observed linewidth narrowing of dark states in rubidium cell by using the Hanle configuration. The reduction of the coherent resonance width under the transition of Rb-87 F-g = 1 -> F-e = 0 is observed and the qualitative explanation about its mechanism is presented. Multiple subnatural width dips are obtained with a linearly polarized laser beam for the transition of Rb-87 F-g = 0, 1, 2. The feature of negative and positive slope, namely dispersionlike feature, is observed in the transmitted light.