105 resultados para TRACE AMOUNT
Resumo:
Laser-induced breakdown spectroscopy (LIBS) as a powerful analytical technique is applied to analyze trace-elements in fresh plant samples. We investigate the LIBS spectra of fresh holly leaves and observe more than 430 lines emitted from 25 elements and molecules in the region 230-438 nm. The influence of laser wavelength on LIBS applied to semi-quantitative analysis of trace-element contents in plant samples is studied. The results show that the UV laser has lower relative standard deviations and better repeatability for semi-quantitative analysis of trace-element contents in plant samples. This work may be helpful for improving the quantitative analysis power of LIBS applied to plant samples.
Resumo:
A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0×10-6-1.0×10-1 M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3 - 5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.
Resumo:
“Dissolved” (< 0.4 μm filtered) and “total dissolvable” (unfiltered) trace element samples were collected using “clean” sampling techniques from four vertical profiles in the eastern Atlantic Ocean on the first IOC Trace Metals Baseline expedition. The analytical results obtained by 9 participating laboratories for Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, and Se on samples from station 4 in the northeast Atlantic have been evaluated with respect to accuracy and precision (intercomparability). The data variability among the reporting laboratories was expressed as 2 × SD for a given element and depth, and was comparable to the 95% confidence interval reported for the NASS seawater reference standards (representing analytical variability only). The discrepancies between reporting laboratories appear to be due to inaccuracies in standardization (analytical calibration), blank correction, and/or extraction efficiency corrections.Several of the sampling bottles used at this station were not adequately pre-cleaned (anomalous Pb results). The sample filtration process did not appear to have been a source of contamination for either dissolved or particulate trace elements. The trace metal profiles agree in general with previously reported profiles from the Atlantic Ocean. We conclude that the sampling and analytical methods we have employed for this effort, while still in need of improvement, are sufficient for obtaining accurate concentration data on most trace metals in the major water masses of the oceans, and to enable some evaluation of the biogeochemical cycling of the metals.
Resumo:
We have found that a commonly used complexation and solvent extraction technique (using mixed dithiocarbamates/Freon/HNO3) does not always extract Cd, Co, Cu and Ni from estuarine samples with the same efficiency as from Milli-Q water. For samples collected from the Derwent Estuary (Australia), the reduced extraction efficiency only occurred for unfiltered samples, but low extraction efficiencies were also observed for a (filtered) riverine certified reference material (SLRS-3) suggesting that the effect may be widespread. We have not been able to identify the reason for the low extraction efficiency and, although it is strongly correlated with the presence of high concentrations of suspended solids, dissolved organic matter and particulate iron, we have no experimental evidence to directly link any of these parameters to the effect. It is possible that similar effects may occur in other techniques which rely on a preconcentration step prior to analysis and that some literature values of heavy metals in estuarine waters may be low. We propose a modification of the standard complexation/solvent extraction method which overcomes these difficulties without adding significantly to the time taken for analyses.
Resumo:
This article reports on the performance of a bismuth-coated carbon microdisk electrode (BiFμE) for the determination of trace heavy metals by anodic stripping voltammetry (ASV). The BiFμE was prepared by electrodeposition of a metallic bismuth film onto the microdisk, by applying an in-situ electroplating procedure. To test the performance of the BiFμE, ASV measurements were performed on synthetic solutions containing Cd2+, Pb2+, and Cu2+ as target ions. The results indicated that cadmium and lead gave well-defined ASV peaks with no interference, and their quantitative determination could be carried out straightforwardly. In particular, linear calibration curves over the range 5.0 x 10-8-1.0 x 10-6M for both ions, and detection limits of 7.8 and 2.9 nM, for cadmium and lead, respectively, after applying a 60 sec preconcentration step, were obtained. The reproducibility was also satisfactory, the relative standard deviation (RSD) being within 2.5% for both ions. Copper, instead, gave an ASV response that. in most experimental conditions, overlapped with that of bismuth. This circumstance made the determination of copper at the BiFμE difficult. Since the latter element could be detected reliably at the uncoated carbon microdisk electrode (CμE), both BiFμE and CμE were employed, respectively, for the determination of lead and copper ions in drinking water, wine, and tomato sauce.