50 resultados para TP resin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of miscible phenolphthalein poly(ether ether ketone)/phenoxy (PEK-C/phenoxy) blends have been measured by dynamic mechanical analysis and tensile testing. The blends were found to have single glass transition temperatures (T(g)) that vary continuously with composition. The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for tensile strength. The tensile strengths of the 90/10 and 75/25 PEK-C/phenoxy blends are higher than those of both the pure components. Embrittlement, or transition from the brittle to the ductile mode of failure, occurs in the composition range of 50-25 wt% PEK-C. These observations suggest that mixing on the segmental level has occurred and that there is enough interaction between the components to decrease its internal mobility significantly. PEK-C was also found to be miscible with the epoxy monomer, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) within the whole composition range. Miscibility between PEK-C and DGEBA could be considered to be due mainly to entropy. However, PEK-C was judged to be immiscible with the diaminodiphenylmethane-curved epoxy resin (DDM-cured ER). It was observed that the PEK-C/ER blends have two T(g), which remain invariant with composition and are almost the same as those of the pure components, respectively. Scanning electron microscopy showed that the PEK-C/ER blends have a two-phase structure. The different miscibility with PEK-C between DGEBA and the DDM-cured ER is considered to be due to the dramatic change in the chemical and physical nature of ER after curing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the preparation of a chelating resin from chemically modified chitosan. The resin was synthesized by using O-carboxymethylated chitosan to cross-link a polymeric Schiffs base of thiourea/glutaraldehyde and characterized by IR. Batch method was applied for testing the resin's adsorption behavior. Adsorption experiments showed the resin had good adsorption capacity and high selectivity for Ag(I) in aqueous solution. The maximum uptake of Ag(I) exhibited was 3.77 mmol/g, at pH 4.0. The results also indicated that the adsorption process was exothermic and fit well with the pseudosecond-order kinetic model. Ag(I) desorption could reach 99.23% using 0.5 M thiourea-2.0 M HCl solution. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MP-25 resin is a chlorine-containing polymer widely used in coatings. The effects of two types of nano-TiO2 (P-25 and RM301 LP) on MP-25 were studied with saline immersion, UV irradiation, and electrochemical impedance spectroscopy. UV irradiation was evaluated in terms of gloss change and X-ray photoelectron spectroscopy (XPS). The results indicate that, compared to pigment R-930 TiO2, P-25 reduced the immersion resistance and accelerated UV aging of the MP-25 coating, whereas RM301 LP showed the opposite effects. XPS analysis showed that MP-25 resin degraded under UV irradiation via dechlorination and C-C bond breakage, similarly to poly(vinyl chloride), but RM301 LP could inhibit the aging of MP-25 to a certain extent. A skin effect of oxygen and chlorine was identified in MP-25 resin by XPS. RM301 LP could improve the impedance of the MP-25 coating because of its excellent fill capacity. Hence, rutile nano-TiO2 RM301 LP represents an excellent additive for MP-25 resin. (c) 2007 Wiley Periodicals, Inc.