192 resultados para Spatial variabilyty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many types of mazes have been used in cognitive brain research and data obtained from those experiments, especially those from rodents' studies, support the idea that the hippocampus is related to spatial learning and memory. But the results from non-huma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most studies regarding the improving or therapeutical effects induced by enriched environment (EE), EE was performed after the stress treatment or in patients with certain diseases. In the current study, the effects of chronic restraint stress (6 h/day) in mice living in an enriched environment or standard environment (SE) were tested. Mice were randomly divided into 4 groups: non-stressed or stressed mice housed in SE or EE conditions (SE, stress + SE, EE, stress + EE). Prepulse inhibition (PPI) of startle was tested after the 2 weeks or 4 weeks stress and/or EE treatment and 1 or 2 weeks withdrawal from the 4 weeks treatment. After the 4 weeks treatment, spatial recognition memory in Y-maze was also tested. The results showed that EE increased PPI in stressed and non-stressed mice after 2 weeks treatment. No effect of EE on PPI was found after the 4 weeks treatment. 4 weeks chronic restraint stress increased PPI in mice housed in standard but not EE conditions. Stressed mice showed deficits on the 1 h delay version of the Y-maze which could be prevented by living in an enriched environment. Our results indicated that living in an enriched environment reversed the impairing effects of chronic restraint stress on spatial recognition memory. However, EE did not change the effects of stress on PPI. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monkeys have strong abilities to remember the visual properties of potential food sources for survival in the nature. The present study demonstrated the first observations of rhesus monkeys learning to solve complex spatial mazes in which routes were guid

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral stress can either block or facilitate memory and affect the induction of long-term potentiation (LTP) and long-term depression (LTD). However, the relevance of the stress experience-dependent long-term depression (SLTD) to spatial memory task is unknown. Here we have investigated the effects of acute and sub-acute elevated platform (EP) and foot shock (FS) stress on LTD induction in CA1 region of the hippocampus of anesthetized rats and spatial memory in Morris water maze. We found that LTD was facilitated by acute EP stress, but not by sub-acute EP stress that may be due to the fast adaptation of the animals to this naturalistic mild stress. However, FS stress, an inadaptable strong stress, facilitated LTD induction both in acute and sub-acute treatment. In addition, with the same stress protocols, acute EP stress impaired spatial memory but the sub-acute EP stressed animals performed the spatial memory task as well as the controls, may due to the same reason of adaptation. However, acute FS stress slightly impaired learning but sub-acute FS even enhanced memory retrieval. Our results showed that SLTD was disassociated with the effect of stress on memory task but might be related to stress experience-dependent form of aberrant memory. (C) 2003 Elsevier Science Ireland Ltd. and the Japan Neuroscience Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience-dependent long-lasting increases in excitatory synaptic transmission in the hippocampus are believed to underlie certain types of memory(1-3). Whereas stimulation of hippocampal pathways in freely moving rats can readily elicit a long-term potentiation (LTP) of transmission that may last for weeks, previous studies have failed to detect persistent increases in synaptic efficacy after hippocampus-mediated learning(4-6). As changes in synaptic efficacy are contingent on the history of plasticity at the synapses(7), we have examined the effect of experience-dependent hippocampal activation on transmission after the induction of LTP, We show that exploration of a new, non-stressful environment rapidly induces a complete and persistent reversal of the expression of high-frequency stimulation-induced early-phase LTP in the CA1 area of the hippocampus, without affecting baseline transmission in a control pathway. LTP expression is not affected by exploration of familiar environments. We found that spatial exploration affected LTP within a defined time window because neither the induction of LTP nor the maintenance of long-established LTP was blocked. The discovery of a novelty-induced reversal of LTP expression provides strong evidence that extensive long-lasting decreases in synaptic efficacy may act in tandem with enhancements at selected synapses to allow the detection and storage of new information by the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical studies demonstrate that prenatal stress causes cognitive deficits and increases vulnerability to affective disorders in children and adolescents. The underlying mechanisms are not yet fully understood. Here, we reported that prenatal stress (10

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to chronic constant light (CCL) influences circadian rhythms and evokes stress. Since hippocampus is sensitive to stress, which facilitates long-term depression (LTD) in the hippocampal CA1 area, we examined whether CCL exposure influenced hippoc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous Studies have demonstrated that in the pentylenetetrazol (PTZ) kindling model, recurrent seizures either impair or have no effect on learning and memory. However, the effects of brief seizures on learning and memory remain unknown. Here, we found

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure to opiates impairs hippocampal long-term potentiation (LTP) and spatial memory, but the underlying mechanisms remain to be elucidated. Given the well known effects of adenosine, an important neuromodulator, on hippocampal neuronal excitability and synaptic plasticity, we investigated the potential effect of changes in adenosine concentrations on chronic morphine treatment-induced impairment of hippocampal CA1 LTP and spatial memory. We found that chronic treatment in mice with either increasing doses (20-100 mg/kg) of morphine for 7 d or equal daily dose (20 mg/kg) of morphine for 12 d led to a significant increase of hippocampal extracellular adenosine concentrations. Importantly, we found that accumulated adenosine contributed to the inhibition of the hippocampal CA1 LTP and impairment of spatial memory retrieval measured in the Morris water maze. Adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reversed chronic morphine-induced impairment of hippocampal CA1 LTP and spatial memory. Likewise, adenosine deaminase, which converts adenosine into the inactive metabolite inosine, restored impaired hippocampal CA1 LTP. We further found that adenosine accumulation was attributable to the alteration of adenosine uptake but not adenosine metabolisms. Bidirectional nucleoside transporters (ENT2) appeared to play a key role in the reduction of adenosine uptake. Changes in PKC-alpha/beta activity were correlated with the attenuation of the ENT2 function in the short-term (2 h) but not in the long-term (7 d) period after the termination of morphine treatment. This study reveals a potential mechanism by which chronic exposure to morphine leads to impairment of both hippocampal LTP and spatial memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspects of the behaviour of three groups of Yunnan snub-nosed langurs, Rhinopithecus bieti, were observed over the course of three field seasons from 1986 to 1988. The major findings of the study were: (1) The habitats of R. bieti were mainly at heights of 3,600-4,150 m above sea level. (2) Groups were very large, with group sizes ranging from more than 100 to 269 individuals. (3) Spatial dispersion densities ranged from about 27 to 106 m2/individual during sleeping and resting, to feeding dispersions as large as 5,000-15,000 m2. (4) The locomotor repertoire of R. bieti consisted largely of walking, jumping and climbing. On very rare occasions, semibrachiation was observed, but true brachiation was never observed. The locomotor repertoires of juveniles were more diverse than those of subadults or adults. (5) Communication consisted mainly of eye-to-eye contact accompanied by murmurs; while loud calls were heard only rarely. (6) Groups moved between sleeping and feeding sites in single file. It is concluded that R. bieti is a mainly terrestrial species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated daily treatment with the catecholamine-depleting agent, reserpine, dramatically reduced performance on the delayed response task, a test of spatial working memory that depends upon the integrity of the prefrontal cortex. Delayed response performance fell from an average of 27.2/30 trials correct before reserpine treatment to an average of 20.4/30 trials correct after repeated reserpine administration. Injection of the alpha2-adrenergic agonist, clonidine (0.0001-0.05 mg/kg), to chronic reserpine-treated monkeys significantly restored performance on the delayed response task; performance after an optimal dose averaged 27.8/30 trials correct. Clonidine's beneficial effects on delayed response performance were longlasting; monkeys remained improved for more than 24 h after a single clonidine injection. The finding that clonidine is efficacious in reserpinized animals supports the hypothesis that alpha2-adrenergic agonists improve cognitive function through actions at postsynaptic, alpha2-adrenergic receptors on non-adrenergic cells. In contrast to the delayed response task, reserpine had little effect on performance of a visual discrimination task, a reference memory task which does not depend on the prefrontal cortex. These results emphasize the importance of postsynaptic alpha2-adrenergic mechanisms in the regulation of working memory,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With advancing age, monkeys develop deficits in spatial working memory resembling those induced by lesions of the prefrontal cortex (PFC). Aged monkeys also exhibit marked loss of dopamine from the PFC, a transmitter known to be important for proper PFC cognitive function. Previous results suggest that D1 agonist treatment can improve spatial working memory abilities in aged monkeys. However, this research was limited by the use of drugs with either partial agonist actions or significant D2 receptor actions. In our study, the selective dopamine D1 receptor full agonists A77636 and SKF81297 were examined in aged monkeys for effects on the working memory functions of the PFC. Both compounds produced a significant, dose-related effect on delayed response performance without evidence of side effects: low doses improved performance although higher doses impaired or had no effect on performance. Both the improvement and impairment in performance were reversed by pretreatment with the D1 receptor antagonist, SCH23390. These findings are consistent with previous results demonstrating that there is a narrow range of D1 receptor stimulation for optimal PFC cognitive function, and suggest that very low doses of D1 receptor agonists may have cognitive-enhancing actions in the elderly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous studies demonstrated that huperzine A, a reversible and selective acetylcholinesterase inhibitor, exerts beneficial effects on memory deficits in various rodent models of amnesia. To extend the antiamnesic action of huperzine A to nonhuman primates, huperzine A was evaluated for its ability to reverse the deficits in spatial memory produced by scopolamine in young adult monkeys or those that are naturally occurring in aged monkeys using a delayed-response task. Scopolamine, a muscarinic receptor antagonist, dose dependently impaired performance with the highest dose (0.03 mg/kg, i.m.) producing a significant reduction in choice accuracy in young adult monkeys. The delayed performance changed from an average of 26.8/30 trials correct on saline control to an average of 20.2/30 trials correct after scopolamine administration. Huperzine A (0.01-0.1 mg/kg, i.m.) significantly reversed deficits induced by scopolamine in young adult monkeys on a delayed-response task; performance after an optimal dose (0.1 mg/kg) averaged 25.0/30 correct. In four aged monkeys, huperzine A (0.001-0.01 mg/kg, i.m.) significantly increased choice accuracy from 20.5/30 on saline control to 25.2/30 at the optimal dose (0.001 mg/kg for two monkeys and 0.01 mg/kg for the other two monkeys). The beneficial effects of huperzine A on delayed-response performance were long lasting; monkeys remained improved for about 24 h after a single injection of huperzine A. This study extended the findings that huperzine A improves the mnemonic performance requiring working memory in monkeys, and suggests that huperzine A may be a promising agent for clinical therapy of cognitive impairments in patients with Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extract of Ginkgo biloba is used to alleviate age-related decline in cognitive function, which may be associated with the loss of catecholamines in the prefrontal cortex. The purpose of this study was to verify whether alpha-2 adrenergic activity is involved in the facilitative effects of extract of Ginkgo biloba on prefrontal cognitive function. Male Wistar rats were trained to reach criterion in the delayed alternation task (0, 25, and 50-s delay intervals). A pilot study found that 3 or 4 mg/kg of yohimbine (intraperitoneal) reduced the choice accuracy of the delayed alternation task in a dose and delay-dependent manner, without influencing motor ability or perseverative behaviour. Acute oral pre-treatment with doses of 50, 100, or 200 mg/kg (but not 25 mg/kg) of extract of Ginkgo biloba prevented the reduction in choice accuracy induced by 4 mg/kg yohimbine. These data suggest that the prefrontal cognition-enhancing effects of extract of Ginkgo biloba are related to its actions on alpha-2-adrenoceptors.