121 resultados para Size effects
Resumo:
The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.
Resumo:
A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.
Resumo:
Dislocation models with considering the mismatch of elastic modulus between matrix and reinforcing particles are used to determine the effective strain gradient \ita for particle reinforced metal matrix composites (MMCp) in the present research. Based on Taylor relation and the kinetics of dislocation multiplication, glide and annihilation, a strain gradient dependent constitutive equation is developed. By using this strain gradient-dependent constitutive equation, size-dependent deformation strengthening behavior is characterized. The results demonstrate that the smaller the particle size, the more excellent in the reinforcing effect. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.
Resumo:
Nanocrystalline materials are characterized by a typical grain size from 1 to 100nm. In order to study the nanocrystalline properties of nanocrystalline materials, we chose nanocrystalline coppers as the research object. The uniaxial tensile deformation of computer produced nanocrystalline coppers is simulated by using molecular dynamics with Finnis-Sinclair potential. The mean grain size of simulated nanocrystalline coppers is varied within the 5.38 to 1.79 nm range. The strength, Young's modulus and stress-strain are strongly depended on the grain size and nanocrystalline structure. The simulated nanocrystalline coppers show a reverse Hall-Petch effect.
Resumo:
We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Resumo:
Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects and substrate effects exist in the nanoindentation of the film–substrate system.
Resumo:
Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.
Resumo:
A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.
Resumo:
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 x 10(8) s(-1) to 1.4 x 10(11) s(-1). The results show that two critical strain rates, i.e., 5 x 10(9) s(-1) and 8 x 10(10) s(-1), are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 x 10(9) s(-1), Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {111} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8x10(10) s(-1), Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 x 10(9) s(-1) and 8 x 10(10) s(-1), only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {111} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation. (C) 2007 Published by Elsevier B.V.
Resumo:
When materials processing is conducted in air surroundings by use of an impinging plasma jet, the ambient air will be entrained into the materials processing region, resulting in unfavorable oxidation of the feedstock metal particles injected into the plasma jet and of metallic substrate material. Using a cylindrical solid shield may avoid the air entrainment if the shield length is suitably selected and this approach has the merit that expensive vacuum chamber and its pumping system are not needed. Modeling study is thus conducted to reveal how the length of the cylindrical solid shield affects the ambient air entrainment when materials processing (spraying, remelting, hardening, etc.) is conducted by use of a turbulent or laminar argon plasma jet impinging normally upon a flat substrate in atmospheric air. It is shown that the mass flow rate of the ambient air entrained into the impinging plasma jet cannot be appreciably reduced unless the cylindrical shield is long enough. In order to completely avoid the air entrainment, the gap between the downstream-end section of the cylindrical solid shield and the substrate surface must be carefully selected, and the suitable size of the gap for the turbulent plasma jet is appreciably larger than that for the laminar one. The overheating of the solid shield or the substrate could become a problem for the turbulent case, and thus additional cooling measure may be needed when the entrainment of ambient air into the turbulent impinging plasma jet is to be completely avoided.
Resumo:
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
Resumo:
The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.
Resumo:
Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.
Resumo:
Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)