70 resultados para Sensing Enterprise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C-60 is reported for the first time. C-60 is embedded in tetra octyl ammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C-60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 mu A mM(-1) cm(-2) was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 mu M and a response time of 3 s, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an ultrasensitive platform for the detection of cadmium (Cd2+) combining the nafion-graphene nanocomposite film with differential pulse anodic stripping voltammetry (DPASV) analysis was presented. It is found that this sensing platform exhibits enhanced response to the determination of the Cd2+ and has been used to determine the Cd2+ in real sample with good recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique strategy for electrochemiluminescence (ECL) sensor based on the quantum dots (QDs) oxidation in aqueous solution to detect amines is proposed for the first time. Actually, there existed two QDs ECL peaks in anhydrous solution, one at high positive potential and another at high negative potential. However, here we introduced the QDs oxidation ECL in aqueous solution to fabricate a novel ECL sensor. Such sensor needed only lower positive potential to produce ECL, which could prevent the interferences resulted from high potential as that of QDs reduction ECL in aqueous solution. Therefore, the present work not only extended the QDs oxidation ECL application field from anhydrous to aqueous solution but also enriched the variety of ECL system in aqueous solution. Furthermore, we investigated the QDs oxidation ECL toward different kinds of amines, and found that both aliphatic alkyl and hydroxy groups could lead to the enhancement of ECL intensity. Among these amines, 2-(dibutylamino)ethanol (DBAE) is the most effective one, and accordingly, the first ECL sensing application of the QDs oxidation ECL toward DBAE is developed; the as-prepared ECL sensor shows wide linear range, high sensitivity, and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe herein simple and sensitive aptamer-based colorimetric sensing of protein (alpha-thrombin in this work) using unmodified gold nanoparticle probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tunnel junction of a gold nanogap was fabricated electrochemically for a molecular sensing device in solution. The tunnel junction was sensitive enough to detect the variation of a potential barrier within the nanogap, such as the chemical adsorption of molecules. By monitoring the variation of the tunneling current, which represents the change of a potential barrier due to molecular adsorption, the molecules could be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective electrogenerated chemiluminescence (ECL) sensor was developed by coimmobilization of the Ru(bpy)(2)(3+)-doped silica (RuDS) nanoparticles and carbon nanotubes (CNTs) on glassy carbon electrode through hydrophobic interaction. The uniform RuDS nanoparticles were prepared by a water-in-oil (W/O) microemulsion method and Ru(bpy)(3)(2+) doped inside could still maintain its high ECL efficiency. With such unique immobilization method, a great deal of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode , which could greatly enhance the ECL response and result in the increased sensitivity. On the other hand, CNTs played dual roles as matrix to immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)(3)(2+) and the electrode. The as-prepared ECL sensor displayed good sensitivity and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusual 3D flower-shaped SnS2 nanostructures have been synthesized using a mild hydrothermal treatment in the presence of octyl-phenol-ethoxylate ( Triton X-100) at 160 degrees C. The nanostructures have an average size of 1 mu m, and consist of interconnected nanosheets with thicknesses of about 40 nm. Based on time-dependent experimental results, we ascribe the oriented attachment mechanism to the growth of the SnS2 nanostructures. The nonionic surfactant Triton X-100 plays a key role in the formation of the flower-like morphology. Room temperature gas-sensing measurements show that the 3D SnS2 nanostructures could serve as sensor materials for the detection of NH3 molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.