68 resultados para Second home
Resumo:
Equilibrium geometries, vibrational frequencies and dissociation energies of the second row transition metal dimers (from Y-2 to Cd-2 except Tc-2) ere studied by use of density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, SVWN, MPW1PW91 and PBE1PBE. The accuracy DFT methods is found to be highly dependent on the functional employed, in particular for vibrational frequency and dissociation energy. In most cases, the predicted bond distance is in general agreement with experiment and previous theoretical results. For van der Waals dimer Cd-2, B3LYP and BLYP have excellent performance in predicting the bond distance. For Ag-2, all density functional methods used in this study perform well in producing the bond distance, vibrational frequency and dissociation energy.
Resumo:
More than 22 000 folding kinetic simulations were performed to study the temperature dependence of the distribution of first passage time (FPT) for the folding of an all-atom Go-like model of the second beta-hairpin fragment of protein G. We find that the mean FPT (MFPT) for folding has a U (or V)-shaped dependence on the temperature with a minimum at a characteristic optimal folding temperature T-opt*. The optimal folding temperature T-opt* is located between the thermodynamic folding transition temperature and the solidification temperature based on the Lindemann criterion for the solid. Both the T-opt* and the MFPT decrease when the energy bias gap against nonnative contacts increases. The high-order moments are nearly constant when the temperature is higher than T-opt* and start to diverge when the temperature is lower than T-opt*. The distribution of FPT is close to a log-normal-like distribution at T* greater than or equal to T-opt*. At even lower temperatures, the distribution starts to develop long power-law-like tails, indicating the non-self-averaging intermittent behavior of the folding dynamics. It is demonstrated that the distribution of FPT can also be calculated reliably from the derivative of the fraction not folded (or fraction folded), a measurable quantity by routine ensemble-averaged experimental techniques at dilute protein concentrations.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory applicable to laser crystals doped with rare earth ions is described. Using this theory, resonant TPA cross sections for transitions from the ground state to the second excited state of the 4f5d configuration in cm(4)s Pr3+:Y3Al5O12 are calculated. The peak value of TPA cross section calculated is 2.75 x 10(-50) cm(4)s which is very close to the previous experimental value 4 x 10(-50) cm(4) s. The good agreement of calculated data with measured values demonstrates that the density matrix resonant TPA theory can predict resonant TPA intensity much better than the standard second-order perturbation TPA theory.
Resumo:
The second-order nonlinear optical tensor coefficients of both KTiOPO4 (KTP) and KTiOAsO4 (KTA) are calculated from the chemical bond viewpoint. All constituent chemical bonds of both crystals are considered, and contributions of each type of bond to the total linearity and nonlinearity are determined. Calculated results agree satisfactorily with experimental data in both signs and numerical values. The calculation shows that though TiO6 groups and P(1)O-4 or As(1)O-4 groups have relatively larger linear contributions, they can only produce an advantageous environment for KOx (x = 8, 9) groups and P(2)O-4 or As(2)O-4 groups in nonlinear optical contributions. The origin of nonlinearity of KTP family crystals comes from the KOx (x = 8, 9) and P(2)O-4 groups in their crystal structures. Furthermore, the difference in optical nonlinearities of KTP type crystals is analyzed, based on the detailed calculation of nonlinearities of both KTP and KTA. (C) 1999 Academic Press.
Resumo:
We report several kinds of interpenetrating polymer networks (IPNs) with nonlinear optical (NLO) properties. DMA spectra show that the two components of the IPNs have good compatibility with each other. The NLO materials have good optical transparency. The thermal stability of alignment was improved and the poled order remained very high. (C) 1999 John Wiley & Sons, Inc.
Resumo:
On the basis of ZINDO methods,according to the sum - over - states( SOS) expression, we divise the program for the calculation of nonlinear second - order optical susceptibilities beta(ijk) and study how the different substituents on the phenyl ring attached to the atom silicon influence or; the nonlinear second - order optical properties for substituted silanes series molecules. The property of (CH3)(3)Si is Studied particularly. The effect of length of silica chains on the calculated beta values is studied too. The regularity summarized from calculated results has been explained micromechanically.
Resumo:
On the basis of AM1 and INDO/CI methods, we devise the program for the calculation of nonlinear second-order optical susceptibilities beta(ijk) and perform systematic theoretical studies on the nonlinear optical second-order properties of azobenzene series molecules, i. e. on the basis of [GRAPHICS] we induced different donors on the left side of phenyl ring, and different accepters on the right side of phenyl ring, and examined the rule of beta variation. The regularity summarized from the calculated results has been explained micromechanically. Finally, a molecule having a big nonlinear second-order optical susceptibility has been designed.
Resumo:
Using a low angle laser light scattering photometer (LALLS) the second virial coefficients(A_2) of ring-shaped and linear polystyrene (RPS and LPS) samples were determined in both toluene and butanone solutions. The A_2 of RPS in the good solvent (toluene) is smaller than that of LPS with the same molecular weight, but in the poor solvent (butanone) these two are very close. For RPS in the molecular weight range of 4×10~4——2.2×10~5, we haveA_(2r)=1.28×10~(-2)M_w~(-0.283) (Toluene 25℃) and A_(2r)=5.06×10~(-2...
Resumo:
A more rapid and powerful response against repeated exposure of same pathogen in vertebrates is usually considered as the reflection of immunological memory, but it is not well understood in invertebrates. In the present Study, the temporal expression profiles of Chlamys farreri peptidoglycan recognition protein-S1 (CfPGRP-S1) gene after two challenges of Listonella anguillarum were examined to evaluate priming response in scallops. The up-regulation of CFPGRP-S1 mRNA occurred 3 h earlier, and the expression level was significant higher (P < 0.05), after the second challenge than that after the first challenge. The preliminary results Provided new insights into invertebrate immunological memory, and they also would be helpful to develop strategies for disease control. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The anti-lipopolysaccharide factor CALF) is a small basic protein that can bind and neutralize lipopolysaccharide (LPS), mediating degranulation and activation of an intracellular coagulation cascade. In the present study, cDNA of the second Eriocheir sinensis ALF (designated as EsALF-2) was cloned and the full-length cDNA of EsALF-2 was of 724 bp, consisting of an open reading frame (ORF) of 363 bp encoding a polypeptide of 120 amino acids. The deduced amino acid of EsALF-2 shared 82% similarity with EsALF-1 from E. sinensis and about 53-65% similarity with ALFs from other crustaceans. The potential tertiary structures of EsALF-1 and EsALF-2 contained two highly conserved-cysteine residues to define the LPS binding site, but the N-terminal of EsALF-1 formed a single additional alpha-helix compared to EsALF-2, implying that EsALF-1 and EsALF-2 might represent different biological functions in E. sinensis. The mRNA transcript of EsALF-2 was detected in all examined tissues of healthy crabs, including haemocytes, hepatopancreas, gill, muscle, heart and gonad, which suggested that EsALF-2 could be a multifunctional molecule for the host immune defense responses and thereby provided systemic protection against pathogens. The mRNA expression of EsALF-2 was up-regulated after Listonelln anguillarum and Pichia pastoris challenge and the recombinant protein of EsALF-2 showed antimicrobial activity against L. anguillarum and P. pastoris. indicating that EsALF-2 was involved in the immune defense responses in Chinese mitten crab against L. anguillarum and P. pastoris. These results together indicated that there were abundant and diverse ALFs in E. sinensis with various biological functions and these ALFs would provide candidate promising therapeutic or prophylactic agents in health management and diseases control of crab aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, internal waves in three-layer stratified fluid are investigated by using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the first-order solutions are consistent with ordinary linear theoretical results, and the second-order solutions describe the second-order modification on the linear theory and the interactions between the two interfacial waves. Both the first-order and second-order solutions derived depend on the depths and densities of the three-layer fluid. It is also noted that the solutions obtained from the present work include the theoretical results derived by Umeyama as special cases.
Resumo:
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
Resumo:
In this paper, the analytical representations of four wave source functions in high-frequency spectrum range are given on the basis of ocean wave theory and dimensional analysis, and the perturbation method is used to solve the governing equations of ocean wave high-frequency spectrum on the basis of the temporally stationary and locally homogeneous scale relations of microscale wave. The microscale ocean wavenumber spectrum correct to the second order has an explicit structure, its first order part represents the equilibrium between different source functions, and its second order part represents the contribution of microscale wave propagation.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.