86 resultados para Sandland vegetation
Resumo:
土壤水分是影响半干旱区人工固沙植被生存生长的关键因素。本文依据水量平衡原理,在植物群落层次上探讨沙地水分与植被恢复关系。以科尔沁沙地流沙治理中广泛应用的小叶锦鸡儿群落为研究对象,通过对降水入渗、根系分布和生长、蒸腾速率的研究,分析了不同年龄、密度和坡向的小叶锦鸡儿群落生长季节土壤水分动态和蒸散量,从水分平衡角度探讨在科尔沁沙地西部条件下人工植被建设中的适密度问题。研究结果表明:对于1mx1m密度小叶锦鸡儿人工植被区:随着植被年龄增长,根系分布呈现浅层化趋势,82.25%以上根系分布在O一100cm深度土壤中,浅层土壤截留降水能力增加,降水入渗深度减少,土壤逐步由水分淋溶型转变为非淋溶型;土壤水分含量降低,群落的稳定性下降。对不同年龄、密度、坡向的沙地小叶锦鸡儿群落生长季节土壤水分状况和蒸散量分析表明,1m×1m密度4年生植被区和2m×2m密度19年生植被区土壤含水量高于凋萎湿度,生长末期土壤贮水量有较多节余,土壤水分能够满足植物生长需求。在保证小叶锦鸡儿群落的固沙作用和群落稳定性、土壤水分收支平衡的前提下,科尔沁沙地西部小叶锦鸡儿固沙植被适宜密度为:植被建立初期(1-4年)采用1m×1m密度,成龄后适宜密度为2m×2m。
Resumo:
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG