274 resultados para SUPPORTED PLATINUM CATALYSTS
Resumo:
The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.
Resumo:
Zirconocene catalyst was heterogenized inside an organosilane-modified montmorillonite (MMT) pretreated by calcination and acidization, for supported catalyst systems with well-spaced alpha-olefin polymerization active centers. The varied pretreatment and modification conditions of montmorillonite are efficient for supported zirconocene catalysts in control of polyethylene microstructures, in particular, molecular weight distribution. In contrast to other supported catalyst systems, Cp2ZrCl2/modified montmorillonite(MMT-7)-supported catalysts with a distinct interlayer structure catalyzed ethylene homopolymerization and copolymerization with I-octene activated by methylaluminoxane (MAO), resulting in polymers with a bimodal molecular weight distribution (MWD).
Resumo:
Steaming-dealuminated HZSM-5-supported molybdenum catalysts have been found to be high coking-resistance catalysts for methane aromatization reactions; compared with conventional catalysts, they give a much higher selectivity towards aromatics.
Resumo:
A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure.
Resumo:
Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.