62 resultados para SMALL SILVER PARTICLES
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.
Resumo:
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.
Resumo:
Novel silver-gold bimetallic nanostructures were prepared by seeding with silver nanoplates in the absence of any surfactants. During the synthesis process, it was found that the frameworks of silver nanoplates were normally kept though the basal plane of silver nanoplates became rugged. The real morphology of these nanostructures depended on the molar ratio of gold ions to the seed particles. When the molar ratio of gold ions to silver atoms increased from 0.5 to 4, porous or branched silver-gold bimetallic nanostructures could be made. The growth mechanism was qualitatively discussed based on template-engaged replacement reactions and seed-mediated deposition reactions. Due to the unusual structures, they exhibited interesting optical properties. Moreover, they were shown to be an active substrate for surface-enhanced Raman scattering measurements.
Resumo:
A simple, green method was developed for the synthesis of gold and silver nanoparticles by using polysaccharides as reducing/stabilizing agents. The obtained positively charged chitosan-stabilized gold nanoparticles and negatively charged heparin-stabilized silver nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results illustrated the formation of gold and silver nanoparticles inside the nanoscopic polysaccharide templates. Moreover, the morphology and size distribution of prepared gold and silver nanoparticles varied with the concentration of both the polysaccharides and the precursor metal salts.
Resumo:
We describe the small-biomolecule ( glycyl glycine)-directed synthesis of single-crystalline silver nanoplates, and different experimental conditions have been explored for a more thorough understanding of the growth mechanism. The yield of silver nanoplates relative to the total number of nanoparticles formed was as high as similar to 80%. It was found that the ratio of glycyl glycine to AgNO3 was the key to forming Ag nanoplates.
Resumo:
In this work we demonstrate that hexagonal nanodisks of cadmium hydroxide with nanoporous structures could be fabricated by a facile hydrothermal treatment without using any templates or organic additives. With this method, the length of the hexagonal edge and thickness of the nanodisks can be adjusted through controlling the experimental conditions such as the pH value of the mother liquor and the initial concentration of the cadmium ion. On the basis of our experimental observations and understandings of the nanocrystal growth, the formation of the nanodisks is believed to mainly originate from the oriented attachment of small particles. Furthermore, the hexagonal Cd(OH)(2) nanodisks can be converted to CdO semiconductors with similar morphology by calcinations.
Resumo:
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.
Resumo:
Biodegradable poly(L-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.
Resumo:
Silver nanoparticles ring was successfully fabricated by electrostatic assembling 4-aminothiophenol (4-ATP) capped silver nanoparticles on predefined extended circular plasmid pBR322 DNA. The silver nanoparticles ring which was about 1.5 mu m in length, and about 2.2 nm in height can be obtained by adjusting the reaction time. The normal Raman scattering spectra reveal that the 4-ATP has contacted with the silver nanoparticles by forming a strong Ag-S bond. The AFM data show that the assembly of 4-ATP capped silver nanoparticles on DNA is ordered.
Resumo:
CTAB-stabilized silver nanoparticles were synthesized by NaBH4 reduction. The as-prepared nanoparticles can be self-assembled on 3-mercaptopropionic acid (MPA) modified gold electrode, which was supported strongly by XPS measurements. Exceptional long-term stability of the as-prepared colloidal silver aqueous solution and the desorption of silver nanoparticle ensemble on MPA after alcohol rinsing proved that these CTAB molecules adsorbed on silver core formed interdigitated bilayer structure. DPV and differential capacitance measurements were performed to characterize the as-prepared silver nanoparticle ensemble. and the interesting quantized capacitance charging behaviors were observed.
Resumo:
The photoelectrocatalytic effect for the reduction of CO2 mediated with methylviologen (MV) was studied at mercury, polished silver and roughened silver electrodes using electrochemical and surface-enhanced Raman scattering (SERS) techniques. A large photoelectrocatalytic effect for the reduction of CO2 in the presence of MV was observed at the roughened silver electrode, whereas there was only a very small photoelectrocatalytic current at a more negative potential on mercury and polished silver electrodes. The SERS spectra of MV in the presence and absence of CO2, along with the electrochemical results, demonstrate that the surface adsorbed complexes, MV+ -Ag and MV0-Ag, played a role as the mediator for photoinduced electron transfer to CO2 in the solution. The results also suggest that the surface plasmon resonance of the nanoscale silver particle contributes to the overall photoelectrocatalytic effect on a roughened silver electrode.
Resumo:
The preparation of self-assembled multilayers of alternating gold nanoparticles and dithiols on Si or SiO2 substrates coated with (3-aminopropyl) trimethoxysilane are reported. The superlattice structure of these self-assembled multilayers was demonstrated by the results of UV-Vis spectrometry, AFM and X-ray diffraction measurements. The multilayer assembled by small-size gold particles has good periodic structure. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
N-Methyl-N'-hexadecylviologen (C16MV) has been the subject of several electrochemical and spectroelectrochemical studies which characterized the species present in various redox states for C16MV monolayers on silver electrode surfaces. Both self-assembled monolayers (SA) and Langmuir-Blodgett (LB) transferred systems have been studied. These indicated inconsistencies regarding the presence or absence of splitting of the first reduction peak in its cyclic voltammogram (CV). The present study demonstrates the important influence of the specific anionic species present in the supporting electrolyte. Splitting may or may not take place, depending on the size and relative strength of the adsorption of specific anions contributed by the supporting electrolyte. Small, strongly adsorbing anions such as iodide produced peak splitting in the CV of C16MV monolayers; bulky but weakly adsorbing anions such as perchlorate may disrupt the ordered structure of monolayers but produce no splitting. Ancillary data provided by surface enhanced Raman spectroscopy (SERS) was consistent with the electrochemical measurements.