101 resultados para Reproductive period
Resumo:
The reproductive traits of Gymnocypris selincuoensis from Selincuo Lake and its tributaries were investigated in 1997 and 1998. The youngest mature male was age 7 with a standard length (SL) of 172.0 mm, and the youngest mature female was age 8 with a SL of 194.0 mm. The L(50)s Of SL and age at first maturity were respectively 250.32 mm and age 9 for males and 224.71 mm and age 8 for females. The gonadosomatic index (GSI) significantly changed with seasons for mature individuals but not for immature individuals. GSIs of mature females at stages IV and V of ovary development increased with SL and reached a maximum value at the SL range from 370 mm to 390 mm; the GSIs of mature males were negatively correlated with SL. The breeding season lasted from early April to early August. Egg size did not significantly change with SL but increased with the delay of spawning. The individual absolute fecundity varied from 1,341 to 28,002 eggs (mean 12,607+/-7,349), and the individual relative fecundity varied from 6.4 to 42.0 eggs.g(-1) (mean 25.5+/-9.7). The individual fecundity increased with total body weight; it also increased with SL for those of SL less than 370 mm. There was a rest of spawning for mature individuals.
Resumo:
Population parameters of Daphnia rosea were studied at various concentrations of Chlorella sp. (0.25, 0.75 and 3.0 mg C l(-1)) at several temperatures (20, 25, 28, and 30 degrees C) in the laboratory. Although there were some differences in the degrees of the effects of the various temperature-food combinations, both food and temperature exerted influences on almost all of the main population parameters of D. rosea. At a water temperature of 28 degrees C, growth and reproduction were reduced, and at the lowest food level (0.25 mgC l(-1)), reproduction failed. D, rosea did not survive at 30 degrees C in spite of abundant food supply, indicating that 30 degrees C is a physiological limit. A positive relationship between body length and brood size was recognized at high and medium food levels. The slope of the regression was the highest at the highest food level and at the lowest temperature (20 degrees C). The low food level exerted a negative influence on the net reproductive rate by lowering the size of egg-bearing females, by decreasing the brood size of each size class, by decreasing the brood number per female, and by increasing the period of empty brood chamber. High water temperature (28 degrees C) also exerted a negative influence on the net reproductive rate in a similar way. For the better understanding of the key factors driving the midsummer dynamics of daphnids in the field, it may be of crucial importance to compare the population parameters of the field populations with experimentally derived values under controlled conditions of food concentration and temperature.
Resumo:
Two type II superlattices (SLs) InAs(2ML)/GaSb(8ML) and InAs(8ML)/GaSb(8ML) were grown on GaAs substrates by molecular-beam epitaxy. High resolution X-ray diffraction showed the periods of the two SLs were 31.2 angstrom and 57.3 angstrom, respectively. Room-temperature optical transmittance spectra showed that there were clear absorption edges at 2.1 mu m and 5 mu m for the two SLs. The SWIR and MWIR photoconductor devices were fabricated by standard lithography and etched by tartaric acid solution. The spectral response and blackbody tests were carried out at low and room temperatues. The results show that the 50% cutoff wavelengths of the two photoconductors are 2.1 mu m and 5.0 mu m respectively and D-bb* is above 2 x 10(8) cmHz(1/2)/W for two kinds of photoconductors at 77K. D-bb* is above 10(8) cmHz(1/2)/W for SWIR photoconductor at room temperature.
Resumo:
Type II superlattices (SLs) short period InAs(4ML)/GaSb(8ML) were grown by molecular-beam epitaxy on lattice-mismatched GaAs substrates and on GaSb substrates. A smooth GaSb epilayer was formed on GaAs substrates by inserting mulit-buffer layers including an interfacial misfit mode AlSb quantum dot layer and AlSb/GaSb superlattices smooth layer. SLs grown on GaAs substrates (GaAs-based SLs) showed well-resolved satellite peaks in XRD. GaSb-based SLs with better structural quality and smoother surface showed strong photoluminescence at 2.55 mu m with a full width at half maximum (FWHM) of 20 meV, narrower than 31 meV of GaAs-based SLs. Inferior optical absorption of GaAs-based SL was observed in the range of 2-3 mu m. Photoresponse of GaSb-based SLs showed the cut-off wavelength at 2.6 mu m.
Resumo:
Long wavelength light emission was realized by capping InAs quantum dots (QDs) with short period GaAs/InAs superlattices (SLs) and an InGaAs strain-reducing layer (SRL). The optical properties were systematically investigated by photoluminescence tests. With increasing the periods of SLs, the emission wavelength of InAs QDs shifts from 1.27 to 1.53 mum. We explain the redshift as a result of the increased QD height with the SLs and the reduced strain in the dot caused by InGaAs SRL. (C) 2004 Published by Elsevier Ltd.
Resumo:
We have calculated the bond distributions and atom positions of GaAs/GalnNAsSb superlattices using Keating's semiempirical valence force field (VFF) model and Monte Carlo simulation. The electronic structures of the superlattices are calculated using folded spectrum method (FSM) combined with an empirical pseudopotential (EP) proposed by Williamson et al.. The effects of N and Sb on superlattice energy levels are discussed. We find that the deterioration of the optical properties induced by N can be explained by the localization of the conduction-band states around the N atom. The electron and hole effective masses of the superlattices are calculated and compared with the effective masses of the bulk GaAs and GaInAs.
Resumo:
First, GaSb epilayers were grown on (001) GaAs substrates by molecular beam epitaxy. We determined that the GaSb layers had very smooth surfaces using atomic force microscopy. Then, very short period InAs/ GaSb superlattices (SLs) were grown on the GaSb buffer layer. The optical and crystalline properties of the superlattices were studied by low-temperature photoluminescence spectra and high resolution transition electron microscopy. In order to determine the interface of SLs, the samples were tested by Raman-scattering spectra at room temperature. Results indicated that the peak wavelength of SLs with clear interfaces and integrated periods is between 2.0 and 2.6 mu m. The SL interface between InAs and GaSb is InSb-like.
Resumo:
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LP03 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.
Resumo:
A systematic investigation is made on the influence of the longitudinal and transverse period distributions of quantum dots on the elastic strain field. The results showed that the effects of the longitudinal period and transverse period on the strain field are just opposite along the direction of center-axis of the quantum dots, and under proper conditions, both effects can be eliminated. The results demonstrate that in calculating the effect of the strain field on the electronic structure, one must take into account the quantum dots period distribution, and it is inadequate to use the isolated quantum dot model in simulating the strain field.
Resumo:
In this paper the resonant wavelength of a long period fiber grating (LPG) is tuned toward longer wavelength by etching the fiber, For LP04 and LP05 cladding modes', the tuning ranges of 23 and 81 nm are achieved, respectively. Also the dependence of the resonant wavelength on the cladding radius of LPG is theoretically simulated. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
We report a period continuously tunable, efficient, mid-infrared optical parametric oscillator (OPO) based on a fan-out periodically poled MgO-doped congruent lithium niobate (PPMgLN). The OPO is pumped by a Nd:YAG laser and a maximum idler output average power of 1.65 W at 3.93 mu m is obtained with a pump average power of 10.5 W, corresponding to the conversion efficiency of about 16% from the pump to the idler. The output spectral properties of the OPO with the fan-out crystal are analyzed. The OPO is continuously tuned over 3.78-4.58 mu m (idler) when fan-out periods are changed from 27.0 to 29.4 mu m. Compared with temperature tuning, fan-out period continuous tuning has faster tuning rate and wider tuning range.