78 resultados para RNA polymerases
Resumo:
Brain structure and function experience dramatic changes from embryonic to postnatal development. Microarray analyses have detected differential gene expression at different stages and in disease models, but gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for>16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synapto-genesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and uncovered more splice variants. We observed differential expression of 3,758 genes between the 2 stages, many with known functions or predicted to be important for neural development. Neurogenesis-related genes, such as those encoding Sox4, Sox11, and zinc-finger proteins, were more highly expressed at E18 than at P7. In contrast, the genes encoding synaptic proteins such as synaptotagmin, complexin 2, and syntaxin were up-regulated from E18 to P7. We also found that several neurological disorder-related genes were highly expressed at E18. Our transcriptome analysis may serve as a blueprint for gene expression pattern and provide functional clues of previously unknown genes and disease-related genes during early brain development.
Resumo:
Background: The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria. Results: The DExD/H containing RNA helicases including RIG-I, MDA5 and LGP2 were analysed in silico in a wide spectrum of invertebrate and vertebrate genomes. The gene synteny of MDA5 and LGP2 is well conserved among vertebrates whilst conservation of the gene synteny of RIG-I is less apparent. Invertebrate homologues had a closer phylogenetic relationship with the vertebrate RIG-Is than the MDA5/LGP2 molecules, suggesting the RIG-I homologues may have emerged earlier in evolution, possibly prior to the appearance of vertebrates. Our data suggest that the RIG-I like helicases possibly originated from three distinct genes coding for the core domains including the HELICc, CARD and ATP dependent DExD/H domains through gene fusion and gene/domain duplication. Furthermore, presence of domains similar to a prokaryotic DNA restriction enzyme III domain (Res III), and a zinc finger domain of transcription factor (TF) IIS have been detected by bioinformatic analysis. Conclusion: The RIG-I/MDA5 viral surveillance system is conserved in vertebrates. The RIG-I like helicase family appears to have evolved from a common ancestor that originated from genes encoding different core functional domains. Diversification of core functional domains might be fundamental to their functional divergence in terms of recognition of different viral PAMPs.
Resumo:
Argonaute 2 gene plays a pivotal role in RNAi in many species. Herein is the first report of the cloning and characterization of Argonaute 2 gene in fish. The full-length cDNA of Gobiocypris rarus Argonaute 2 (GrAgo2) consisted of 3073 nucleotides encoding 869 amino acid residues with a calculated molecular weight of 98.499 kDa and an estimated isoelectric point of 9.18. Analysis of the deduced amino acid sequence showed the presence of two signature domains, PAZ and Piwi. RT-PCR analysis indicated that GrAgo2 mRNA expression could be detected in widespread tissues. After infection with grass carp reovirus, GrAgo2 expression was up-regulated from 12 h post-injection (p < 0.05) and returned to control levels at 48 h post-injection (p > 0.05). These data imply that GrAgo2 is involved in antiviral defense in rare minnow. (C) 2008 Published by Elsevier Ltd.
Resumo:
Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.
Resumo:
A short-hairpin RNA (shRNA) expression system, based on T7 RNA polymerase (T7RP) directed transcription machinery, has been developed and used to generate a knock down effect in zebrafish embryos by targeting green fluorescent protein (gfp) and no tail (ntl) mRNA. The vector pCMVT7R harboring T7RP driven by CMV promoter was introduced into zebrafish embryos and the germline transmitted transgenic individuals were screened out for subsequent RNAi application. The shRNA transcription vectors pT7shRNA were constructed and validated by in vivo transcription assay. When pT7shGFP vector was injected into the transgenic embryos stably expressing T7RP, gfp relative expression level showed a decrease of 68% by analysis of fluorescence real time RT-PCR. As a control, injection of chemical synthesized siRNA resulted in expression level of 40% lower than the control when the injection dose was as high as 2 mu g/mu l. More importantly, injection of pT7shNTL vector in zebrafish embryos expressing T7RP led to partial absence of endogenous ntl transcripts in 30% of the injected embryos when detected by whole mount in situ hybridization. Herein, the T7 transcription system could be used to drive the expression of shRNA in zebrafish embryos and result in gene knock down effect, suggesting a potential role for its application in RNAi studies in zebrafish embryos.
Resumo:
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 163 rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress.
Resumo:
To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.
Resumo:
Classical swine fever virus (CSFV) non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp), a key enzyme which initiates RNA replication by a de novo mechanism without a primer and is a potential target for anti-virus therapy. We expressed the NS5B protein in Escherichia coli. The rGTP can stimulate de novo initiation of RNA synthesis and mutation of the GDD motif to Gly-Asp-Asp (GAA) abolishes the RNA synthesis. To better understand the mechanism of viral RNA synthesis in CSFV, a three-dimensional model was built by homology modeling based on the alignment with several virus RdRps. The model contains 605 residues folded in the characteristic fingers, palm and thumb domains. The fingers domain contains an N-terminal region that plays an important role in conformational change. We propose that the experimentally observed promotion of polymerase efficiency by rGTP is probably due to the conformational changes of the polymerase caused by binding the rGTP. Mutation of the GDD to GAA interferes with the interaction between the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Double-stranded RNA (dsRNA) has been shown to be a useful tool for silencing genes in zebrafish (Danio rerio), while the blocking specificity of dsRNA is still of major concern for application. It was reported that siRNA (small interfering RNA) prepared by endoribonuclease digestion (esiRNA) could efficiently silence endogenous gene expression in mammalian embryos. To test whether esiRNA could work in zebrafish, we utilized Escherichia coli RNaseIII to digest dsRNA of zebrafish no tail (ntl), a mesoderm determinant in zebrafish and found that esi-ntl could lead to developmental defects, however, the effective dose was so close to the toxic dose that esi-ntl often led to non-specific developmental defects. Consequently, we utilized SP6 RNA polymerase to produce si-ntl, siRNA designed against ntl, by in vitro transcription. By injecting in vitro synthesized si-ntl into zebrafish zygotes, we obtained specific phenocopies of reported mutants of ntl. We achieved up to a 59%no tail phenotype when the injection concentration was as high as 4 mu g/mu L. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization analysis showed that si-ntl could largely and specifically reduce mRNA levels of the ntl gene. As a result, our data indicate that esiRNA is unable to cause specific developmental defects in zebrafish, while siRNA should be an alternative for downregulation of specific gene expression in zebrafish in cases where RNAi techniques are applied to zebrafish reverse genetics.
Resumo:
The RNA helicase Vasa is a germ cell marker in animals, and its homolog in vertebrates to date has been limited to bisexual reproduction. We cloned and characterized CagVasa, a Vasa homolog from the gibel carp, a fish that reproduces bisexually or gynogenetically. CagVasa possesses 14 RGG repeats and eight conserved motifs of Vasa proteins. In bisexually reproducing gibel carp, vasa is maternally supplied and its zygotic expression is restricted to gonads. By in situ hybridization on testicular sections, vasa is low in spermatogonia, high in primary spermatocytes, reduced in secondary spermatocytes, but disappears in spermatids and sperm. In contrast, vasa persists throughout oogenesis, displaying low-high-low levels from oogonia over vitellogenic oocytes to maturing oocytes. A rabbit anti-Vasa antibody (alpha Vasa) was raised against the N-terminal CagVasa for fluorescent immunohistochemistry. On testicular sections, Vasa is the highest in spermatogonia, reduced in spermatocytes, low in spermatids, and absent in sperm. In the ovary, Vasa is the highest in oogonia but persists throughout oogenesis. Subcellular localization of vasa and its protein changes dynamically during oogenesis. The aVasa stains putative primordial germ cells in gibel carp fry. It detects gonadal germ cells also in several other teleosts. Therefore, Cagvasa encodes a Vasa ortholog that is differentially expressed in the testis and ovary. Interestingly, the alpha Vasa in combination with a nuclear dye can differentiate critical stages of spermatogenesis and oogenesis in fish. The cross-reactivity and the ability to stain stage-specific germ cells make this antibody a useful tool to identify fish germ cell development and differentiation. (c) 2005 Wiley-Liss, Inc.
Resumo:
Although reovirus infection is one of the major virus diseases of grass carp in China, the available knowledge on the structure and function of genes and proteins of the virus is limited. The complete sequence of the S9 genome segment of grass carp hemorrhage virus (GCHV) was determined. The segment consists of 1130 nucleotides and has a large open reading frame (ORF) encoding a protein of 352 amino acids with predicted molecular mass of 37.7 kDa. Amino acid sequence comparison revealed that the deduced protein encoded by GCHV S9 is closely related to the sigma NS proteins of mammalian reovirus (MRV) and avian reovirus (ARV). Secondary structure analysis displayed that the form of alpha -helices (40.1%) and beta -sheets (49.4%) are the richest two contents in the protein encoded by S9, and this protein is predicted to be a nonstructural protein. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.