66 resultados para REACTIVE ORGANOMETALLICS
Resumo:
Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetics studies on reactive extrusion were carried out for the difficulties as expected. In this work, the macromolecular peroxide-induced grafting of acrylic acid and methyl methacrylate onto linear low density polyethylene by reactive extrusion was chosen as the model system for the kinetics study; the samples were taken out from the barrel at five ports along screw axis and analyzed by FTIR, H-1 NMR, and ESR. For the first time, the time-evolution of reaction rate, the reaction order, and the activation energy of graft copolymerization and homopolymerization in the twin screw extruder were directly obtained. On the basis of these results, the general reaction mechanism was tentatively proposed. It was demonstrated that an amount of chain propagation free radicals could keep alive for several minutes even the peroxides completely decomposed and the addition of monomer to polymeric radicals was the rate-controlled step for the graft copolymerization.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), CO-catalyzed melt grafting of maleic anhydride (MAH) onto co-polypropylene (co-PP) in the presence of dicumyl peroxide (DCP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 as a coagent leads to an enhancement in both MFR and the grafting degree of MAH, along with a simultaneous decrease in the gel content. When the Nd2O3 concentration is 6.0 mmol%, the increment of the grafting degree of MAH maximally is up to about 20% compared with the related system without adding Nd2O3, and the gel content decreases simultaneously to a very low level of about 3%. Attenuated total reflection FTIR (ATR-FTIR) indicates that the gel in the graft copolymers mainly arise from the cross-linking reaction between ethylene units of co-PP. A reasonable reaction mechanism has been put forward on the basis of our experimental results and other mechanisms reported in the literature. We also tentatively explain above results by means of synergistic effect between DCP and Nd2O3, which causes a higher concentration of the macroradical, in particular the tertiary macroradical.
Resumo:
The crystallization behavior and morphology of nonreactive and reactive melt-mixed blends of polypropylene (PP) and polyamide (PA12; as the dispersed phase) were investigated. It Was found that the crystallization behavior and the size of the PA12 particles were dependent on the content of the compatibilizer (maleic anhydride-modified polypropylene) because an in situ reaction occurred between the maleic anhydride groups of the compatibilizer and the amide end groups of PA12. When the amount of compatibilizer was more than 4%, the PA12 did not crystallize at temperatures typical for bulk crystallization. These finely dispersed PA12 particles crystallized co-incidently with the 1313 phase. The changes in domain size with compatibilizer content were consistent with Wu's theory. These investigations showed that crystallization of the dispersed phase Could not be explained solely by the size of the dispersion. The interfacial tension between the polymeric components in the blends may yield information on the fractionation of crystallization.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), -assisted melt free-radical grafting of maleic anhydride (MAH) on isotactic-polypropylene (i-PP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 into reactive system leads to an enhancement of the grafting degree of MAH, along with an elevated degradation of i-PP matrix. When Nd2O3 content is 4.5 mmol %, the increment of the grafting degree of MAH (maximally) is up to about 30% compared with that of the related system without adding Nd2O3, while the severest degradation of i-PP matrix simultaneously occurs. On the basis of the reaction mechanism of PP-g-MAH proposed before, the sequence of beta-scission and grafting reaction is discussed in detail. It is found that, for the reactive system studied, most tertiary macroradicals first undergo beta-scission, and then, grafting reaction with MAH takes place at the new radical chain ends. The imported Nd2O3 has no effect on the aforementioned reaction mechanism, whereas it enhances the initiating efficiency of the initiator, dicumyl peroxide (DCP).
Resumo:
Assisted by mechanical alloying and high-pressure technique, a new W3Mg intermetallic was formed. W3Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the Subsequent high pressure and high temperature treatment. W3Mg intermetallic was identified as a tetragonal structure and the lattice parameter was a = 0.7880 nm, c = 0.7070 nm. The synthesis mechanism is also discussed in this paper.
Resumo:
Assisted by a mechanical alloying and high-pressure technique, a new W4Mg intermetallic was formed. W4Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the subsequent high-pressure and high-temperature treatment. W4Mg intermetallic was identified as a cubic structure and the lattice parameter was a=0.4150 nm. The synthesis mechanism is also discussed in this paper.
Resumo:
Reactive compatibilization of ethylene-propylene copolymer functionalized with allyl (3-isocyanato-4-tolyl) carbamate (TAI) isocyanate (EPM-g-TAI) and polyamide 6 (PA6) was investigated in this paper, FTIR analysis revealed the evidence of a chemical reaction between the end groups of PA6 and EPM-g-TAI. Thermal, rheological, morphological, and mechanical properties of the resultant system were examined, DSC analysis indicated that the crystallization of PA6 in Pa6/EPM-g-TAI blends was inhibited, due to the chemical reaction that occurs at the interface of PA6 and EPM-g-TAI. Rheological measurement showed that complex viscosity and storage modulus of PA6/EPM-g-TAI were both dramatically enhanced compared to those of PA6/EPM at the same blending composition. After examining the morphology of both blending systems, smaller particile sizes, more homogeneous distribution of domains and improved interfacial adhesion between matrix and domains were observed in the compatibilized system. Mechanical properties such as tensile strength. Young's modulus, flexural strength and modulus, as well as notched and un-notched impact strength of PA6/EPM-g-TAI blends were also found to improve gradually with increasing the content of grafted TAI.
Resumo:
The effect of polymerization of monomer reactant-polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
In this paper, blends of Nylon 6,6 with the liquid crystal polymer Vectra A950 are considered; specifically we focused our attention on Nylon 6,6 modifications by interchange reactions that can occur in the melt, as a function of mixing conditions and blend compositions. Two matrix samples have been used, characterised by a slightly different relative amount of amine and carboxylic end groups, being the latter predominant in both cases. The dried polymers Nylon 6,6/Vectra, combined in weight ratios between 95/5 and 50/50, were subjected to reactive blending with different methods (single-screw extruder, Brabender, pyrex reactor). Pure Nylon samples have been also investigated as reference materials. The soluble Nylon 6,6-rich fraction of each blend was separated from the insoluble Vectra-rich one and used for molecular and spectroscopic characterisations. Thermal and morphological analyses, as well as testing of tensile properties, were carried out on the blends. Evidences of the occurrence of interchange reactions are given and the most probable ones are suggested. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this work, chemical structures and molecular parameters of grafted materials of PP-g-MAH prepared by melt reactive extrusion were studied by using electrospray ionization-mass spectrometer and gel permeation chromatography. It was found that the initial radicals, due to homolitic scission of dicumyl peroxide could be combined with maleic anhydride (MAH) monomers as well as polypropylene (PP) molecular chains. The homopolymerization of MAH cannot occur and the MAH radicals undergo a dismutational reaction under the processing condition (180-190 degreesC). A modified mechanism of melt grafting MAH onto PP has been proposed tentatively on the basis of our experimental results and other experimental findings published in the literature. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Grafting of acrylic acid and glycidyl methacrylate onto low density polyethylene (LDPE) was performed by using a corotating twin-screw extruder. The effects of residence time and concentration of initiator and monomers on degree of grafting and gel content of grafting LDPE were studied systematically. Paraffin, styrene, p-benzoquinone, triphenyl phosphite, tetrachloromethane, and oleic acid were added to try to decrease the extent of crosslinking of LDPE. 4-hydroxyl-2,2,6,6-tetramethyl-1-piperidinyloxy (4-hydroxyl-TEMPO) and dipentamethylenethiuram tetrasulfide were also tried to inhibit crosslinking reaction of LDPE during its extruding grafting process. It was found that p-benzoquinone, triphenyl phosphite and tetrachloromethane were good inhibitors for crosslinking of LDPE. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The reaction of LnCl3.2LiCl with 1 equiv of MeCpNa in THF gives the complexes [(THF)2Li(mu-Cl)2]2[MeCpLn(THF)] (Ln = Nd (1), La (2)) in good yield. These precursors react further with 2 equiv of LiNPh2 to produce the new complexes [Li(DME)3][MeCpLn(NPh2)3] (Ln = La (3), Pr (4), Nd (5)). They have been characterized by elemental analyses and IR and NMR spectra, as well as by structural analyses of 1 and 3. The chloride 1 crystallizes in the monoclinic space group P2(1)/n (No. 14) with a = 12.130 (5) angstrom, b = 17.343 (5) angstrom, c = 17.016 (5) angstrom, beta = 108.54 (3)-degrees, V = 3393.87 angstrom3, Z = 4, and D(c) = 1.45 g/cm3. Least-squares refinement led to a final R value of 0.051 (I greater-than-or-equal-to 3-sigma(I(o))) for 2004 independent reflections. Complex 3 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 18.335 (6) angstrom, b = 16.576 (5) angstrom, c = 17.461 (6) angstrom, beta = 96.04 (3)-degrees, V = 5277.17 angstrom3, D(c) = 1.26 g/cm3, Z = 4, and R = 0.057 (I greater-than-or-equal-to 2.5-sigma(I(o))) for 3378 reflections. The structure of 3 consists of discrete ion pairs [Li(DME)3]+ and [MeCpLa(NPh2)3]- with average La-N and La-C(ring) distances of 2.459 (8) and 2.84 (1) angstrom, respectively.