162 resultados para Quantum ring
Resumo:
We propose an asymmetric double AlGaAs/GaAs quantum well structure with a common continuum to generate a large cross-phase modulation (XPM). It is found, owing to resonant tunneling, that a large XPM can be achieved with vanishing linear and two-photon absorptions. (c) 2007 Optical Society of America.
Resumo:
In this paper, we present a scheme for implementing the unconventional geometric two-qubit phase gate with nonzero dynamical phase based on two-channel Raman interaction of two atoms in a cavity. We show that the dynamical phase and the total phase for a cyclic evolution are proportional to the geometric phase in the same cyclic evolution; hence they possess the same geometric features as does the geometric phase. In our scheme, the atomic excited state is adiabatically eliminated, and the operation of the proposed logic gate involves only the metastable states of the atoms; thus the effect of the atomic spontaneous emission can be neglected. The influence of the cavity decay on our scheme is examined. It is found that the relations regarding the dynamical phase, the total phase, and the geometric phase in the ideal situation are still valid in the case of weak cavity decay. Feasibility and the effect of the phase fluctuations of the driving laser fields are also discussed.
Resumo:
We theoretically show that selection of a single quantum path in high-order harmonics generation can be realized in a few-optical-cycle regime with two-color schemes. We also demonstrate, in theory as well, the generation of spectrally smooth and ultrabroad extreme ultraviolet supercontinuum in argon gas which can produce single similar to 79 as pulses with currently available ultrafast laser sources. Our finding can be beneficial for generating isolated sub-100 as extreme ultraviolet pulses.
Resumo:
The linear and nonlinear optical absorptions considering the weak-coupling electron-LO-phonon interaction in asymmetrical semiparabolic quantum wells are theoretically investigated. The numerical results for the typical GaAs/AlxGa1-xAs material show that the factors of Al content x, the relaxation time and the photon energy have great influence on the optical absorption coefficients. Moreover, the theoretical values of the optical absorptions are more than a factor of 2-3 higher than the one in the structure without considering the electron-LO-phonon interaction by calculating. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In a Nd:glass microspherical cavity the enhancement and inhibition of spontaneous-emission processes that are due to cavity QED effects have been observed. The rates of the enhanced spontaneous emission are location dependent and reach a maximum value of more than 10(3) times the free-space value. The large enhancement strongly modifies the decay processes of Nd ions in glass, and the radiative properties of Nd:glass have been changed. As a result a new spectrum including new lasing wavelengths in the Nd:glass sphere has been observed.
Resumo:
We investigate the fluorescence spectrum in a nearly degenerate atomic system of a F-e = 0 -> F-g = 1 transition by analytically solving Schrodinger equations. An ultranarrow fluorescence spectral line in between the two coherent population trapping windows has been found. Our analytic solutions clearly show the origin of the ultranarrow spectral line. Due to quantum interference effects between two coherent population trapping states, the width and intensity of the central spectral line can be controlled by an external magnetic field. Such an effect may be used to detect a magnetic field.