49 resultados para Pseudomonas Putida
Resumo:
CopRS/CopABCD是细菌用以维持铜内环境稳定的一个系统,虽然已在荧光假单胞菌(Pseudomonas fluorescens)中发现了CopRS/CopABCD系统的同源物,但其潜在的功能还未知。本实验在一个鱼类致病菌P. fluorescens(TSS)中鉴定到了一个基因簇,由copR、copS、copC和copD组成,但缺乏copAB。copR、copS、copC和copD基因的敲除实验发现copRSCD基因簇与TSS抗铜性相关,而且copRS操纵子和copCD操纵子在转录水平上受亚抑制水平的铜诱导。双元调控系统中的调控蛋白CopR不仅激活copCD表达,而且还激活copRS的表达。凝胶滞缓实验显示CopR能直接与copCD和copRS的启动子区域结合。干扰copR的正常表达不仅影响细菌的生长,而且还影响到细菌生物膜的形成、对鱼的侵染力和在组织中的存活力。本实验还筛选到一个CopR的突变体C104,该突变体因缺失N端的信号接受域而成为一个具有组成性活性的调控蛋白,C104在TSS中表达时导致菌株的毒力降低。本实验所发现的P. fluorescens CopR与细菌致病力之间的关系以前未见报道。
Resumo:
铁吸收调节蛋白(Fur)是革兰氏阴性菌中普遍存在的重要的转录调控因子,它调控着不同的生命活动,包括铁的吸收,细胞的新陈代谢,应激反应以及毒力因子的合成。因此,对于许多病原菌来说,Fur在侵染和致病的过程中起到了关键性的作用。本研究从一株分离自患病牙鲆的荧光假单胞菌TSS中克隆得到了fur基因,并且发现TSS Fur能够与fur基因突变的大肠杆菌部分互补。本研究构建了一株TSS fur基因的缺失突变体TFM。研究发现与TSS相比,TFM的生长能力和抵抗宿主血清杀菌能力减弱,外膜蛋白表达异常,在宿主血液和组织中的扩散能力显著降低,并且在以牙鲆为模型的感染实验中发现TFM的毒力较TSS大幅下降。将TFM作为减毒疫苗通过注射、浸泡和口服的途径免疫牙鲆后,发现其对荧光假单胞菌和嗜水气单胞菌皆有很好的保护效应。为了进一步扩展TFM的交叉保护范围,本研究进一步构建了表达哈维氏弧菌抗原AgaV-DegQ的质粒pJAQ,并将其转入TFM中得到TFM/pJAQ。研究发现TFM/pJAQ是一种高效交叉保护疫苗,能同时保护牙鲆抵抗荧光假单胞菌、嗜水气单胞菌以及哈维氏弧菌感染。
Resumo:
In order to explore marine microorganisms with medical potential, marine bacteria were isolated from seawater, sediment, marine invertebrates and seaweeds collected from different coastal areas of the China Sea. The antimicrobial activities of these bacteria were investigated. Ethyl acetate extracts of marine bacterial fermentation were screened for antimicrobial activities using the method of agar diffusion. The results showed that 42 strains of the isolates have antimicrobial activity. The proportion of active bacteria associated with marine invertebrates (20%) and seaweeds (11%) is higher than that isolated from seawater (7%) and sediment (5%). The active marine bacteria were assigned to the genera Alteromonas, Pseudomonas, Bacillus and Flavobacterium. The TLC autobiographic overlay assay implied that the antimicrobial metabolites produced by four strains with wide antimicrobial spectrum were different. Due to a competitive role for space and nutrient, the marine bacteria associated with marine macroorganisms (invertebrates and seaweeds) could produce more antibiotic substances. These marine bacteria were expected to be potential resources of natural antibiotic products.
Resumo:
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E coli was 15.62 and 62.49 mu g/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50 - 500 mu g/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity. (c) 2007 Elsevier Ltd. All rights reserved.