53 resultados para Profound


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants have an integral adaptive mechanism to solar UV -B radiation from plant morphology to physiological action and the formation of UV -B radiation absorption pigment is very significant. There is the close interrelation between plant adaptive mechanism and its origin and distribution, which has the profound molecular basis. It is important to strengthen study on the enhancing solar UV _ B radiation instead of being afraid of or optimistic about it in order to solve the uncertainties and make scientific decision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing by domestic herbivores is generally recognized as a major ecological factor and an important evolutionary force in grasslands. Grazing has both extensive and profound effects on individual plants and communities. We investigated the response patterns of Polygonum viviparum species and the species diversity of an alpine shrub meadow in response to long-term livestock grazing by a field manipulative experiment controlling livestock numbers on the Qinghai-Tibet Plateau in China. Here, we hypothesize that within a range of grazing pressure, grazing can alter relative allocation to different plant parts without changing total biomass for some plant species if there is life history trade-offs between plant traits. The same type of communities exposed to different grazing pressures may only alter relative species' abundances or species composition and not vary species diversity because plant species differ in resistant capability to herbivory. The results show that plant height and biomass of different organs differed among grazing treatments but total biomass remained constant. Biomass allocation and absolute investments to both reproduction and growth decreased and to belowground storage increased with increased grazing pressure, indicating the increasing in storage function was attained at a cost of reducing reproduction of bulbils and represented an optimal allocation and an adaptive response of the species to long-term aboveground damage. Moreover, our results showed multiform response types for either species groups or single species along the gradient of grazing intensity. Heavy grazing caused a 13.2% increase in species richness. There was difference in species composition of about 18%-20% among grazing treatment. Shannon-Wiener (H') diversity index and species evenness (E) index did not differ among grazing treatments. These results support our hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文采用音乐物理和数学方法揭示了汉语四声的奥秘——频率变比3∶2,这个比例被命名为“宝石配比”.这一发现为语音研究、语音教学以及计算机语音识别提供了一条重要的科学依据.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development of oil/gas seismic exploration, seismic survey for fracture/porosity type reservoir is becoming more and more important. As for China, since it has over 60% store of low porosity and low permeability oil/gas reservoir, it’s more urgent to validly describe fracture/porosity type oil/gas trap and proposing the related, developed seismic technique. To achieve mapping fracture/porosity region and its development status, it demands profound understanding of seismic wave propagation discipline in complex fractured/pored media. Meanwhile, it has profound scientific significance and applied worth to study forward modeling of fracture/porosity type media and pre-stacked reverse time migration. Especially, pre-stacked reverse-time migration is the lead edge technique in the field of seismology and seismic exploration. In this paper, the author has summarized the meaning, history and the present state of numerical simulation of seismic propagation in fractured/pored media and seismic exploration of fractured/pored reservoirs. Extensive Dilatancy Anisotropy (EDA) model is selected as media object in this work. As to forward modeling, due to local limitation of solving spatial partial derivative when using finite-difference and finite-element method, the author turns to pseudo-spectral method (PSM), which is based on the global characteristic of Fourier transform to simulate three-component elastic wave-field. Artifact boundary effect reduction and simulation algorithm stability are also discussed in the work. The author has completed successfully forward modeling coding of elastic wave-field and numerical simulation of two-dimensional and three-dimensional EDA models with different symmetric axis. Seismic dynamic and kinematical properties of EDA media are analyzed from time slices and seismic records of wave propagation. As to pre-stacked reverse-time migration for elastic wave-field in fractured/pored media, based on the successful experience in forward modeling results with PSM, the author has studied pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field in two dimensional EDA media induced by preferred fracture/pore distribution. At the same time, different image conditions will bring up what kind of migration result is detailed in this paper. The author has worded out software for pre-stacked reverse-time depth-domain migration of elastic wave-field in EDA media. After migration processing of a series of seismic shot gathers, influences to migration from different isotropic and anisotropy models are described in the paper. In summary, following creative research achievements are obtained:  Realizing two-dimensional and three-dimensional elastic wave-field modeling for fractured/pored media and related software has been completed.  Proposed pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field.  Through analysis of the seismic dynamic and kinematical properties of EDA media, the author made a conclusion that collection of multi-component seismic data can provide important data basis for locating and describing the fracture/pore regions and their magnitudes and the preferred directions.  Pre-stacked reverse-time depth-domain migration technique has the ability to reconstruct complex geological object with steep formations and tilt fracture distribution. Neglecting seismic anisotropy induced by the preferred fracture/pore distribution, will lead to the disastrous imaging results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil and gas exploration of marine strata in China's Pre-Cenozoic residual basins is regarded as a worldwide puzzle because of existent problems and cruxes. Objectively speaking, the subsurface geologic structure is complicated, and the surface conditions of some areas are tough. On the other hand, there are still many problems to be solved in oil and gas exploration technologies of Pre-Cenozoic marine fades, and theoretic cognition about petroleum geology is not profound yet. Therefore, it is principal to explore integrated geophysical research ways of Pre-Cenozoic residual basins. Seismic prospecting and geophysical integrated interpretation technologies aimed at middle Paleozoic marine facies with deeper burial and complicated geologic conditions have not formed due to bad quality of deep strata data. Pre-Cenozoic strata, and especially extension, thickness and internal structure of Paleozoic strata can not be recognized from seismic profiles, so it is hard to systematically cognize structural features and oil-gas resources prospect of Pre-Cenozoic basins. To further investigation of fabric and structural features, basin prototype, formation and evolution pattern of Pre-Cenozoic basins, and also their control over formation, migration and aggregation of oil and gas, will play a guiding and promotive role in developing new surveying areas, selecting advantageous zones and predicting oil-gas resources.This paper follows the modem macrocontrol theory of "Region constrains local, deep strata controls shallow ones", and uses the integrated geophysical method of "One guide, two hinges, three combinations and multi feedbacks'*. Based on several years of geological and geophysical results of the Shengli Oilfield, and 14 newly-joint regional seismic profiles, deep structure and oil-gas bearing capacity of the Jiyang area are discussed and new cognitions are drawn as below.Seismic identification marks Tr, Tg, Tgl and Tg2 are established for importantPre-Cenozoic geological interfaces, and promoted to the whole Jiyang area.Through area-wide tracking and clogging of important seismic reflection marker,the isochronic framework of pre-Tertiary basin is set up in the Jiyang area for the firsttime, which is vital for basin research.Integrated with geological and geophysical research results, the Jiyang area isdivided into four first-order tectonic sequences- basement, lower tectonic layer,upper tectonic layer, and top tectonic layer. The basement and lower tectonic sequence which are related to Pre-Cenozoic are studied with emphasis.Through the research of regional seismic profiles, the point of view is given thatthe Kongdian Formation of Jiyang is structural transition period. The top-bottomunconformable interface of the Kongdian Formation is found out for the first time,and the basin model is determined primarily, which lay a basis for prototype basinresearch of the Jiyang Kongdian Formation.The distribution status of Middle-Paleozoic is delineated in the Jiyang area.The maximum thickness of Paleozoic lies in the top of the south declivity of half-graben. The thickness gets thinner towards the center of Mesozoic and Cenozoic half-graben basin, and even disappears. Structural action in the west-north affects the distribution of Paleozoic residual strata.6. The features of second-order tectonic sequence of the Jiyang depression isstudied and its evolution history of is rebuilt.Combined with the 5-stage evolution history of the China continent and structure evolution features of the Jiyang area, the structure sedimentary process since Paleozoic is divided into 5 periods - basement forming , Indosinian orogenic, Yanshan negative reversal, Himalayan extension and Neogene subsidence period.Combined with the research results of gravity, magnetic surveying and regionalprofiles, this paper brings forward the idea for the first time that the western boundaryof the Jiyang depression is the Ningjin-Yangpan fracture zone, and forms aside-column assemblage with the Wudi fracture zone.The opinion that under Middle-Cenozoic basins in the middle Jiyang area theremight superimpose an old residual basin is given for the first time. And if it is provedto be true, a new exploration space will be pioneered for Jiyang and even north China.There exists many types of tectonic-stratigraphic traps formed under piezotropy,extension and compound action in Pre-Cenozoic Jiyang. Therein all kinds of burialhills are the most important oil-gas trap type of Pre-Cenozoic, which should besurveyed layeredly according to the layout of oil sources.As such a new challenging project and field, the paper systematically analyses different geophysical responses of the Jiyang area, frames the deep structure of the area, and preliminarily recognizes the Pre-Cenozoic residual basins. It breaks through to a certain extent in both theory and practice, and is expected to provide new geophysical and geotectonic clues for deep exploration in Shengli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on naïve biology investigates children spontaneous understanding of biology objects, phenomena and function. Previous researches focus mostly on biology phenomena. Little has done on organism’s function, such as eating food. Many research in this field found that children were unable to categorize food by nutrition criterion, but rely on physical cues. In order to investigate the development of children’s naïve understanding of food and to find if they can classify food by nutrition criterion, three age groups (5-year-olds, 7-year-olds, and 9-year-olds) were included in this study. Varies experimental tasks were also used to explore the children’s understanding of food and its function. The results showed as the followings: 1) A few 5-year- old children can classify food by nutrition criterion when they take the spontaneous classification task. However, more and more children can realize what make a kind of food different from another can be the nutrition it contains. 2) Kindergarteners can find the relation between food and its output. When they become older, more and more children can explain the relation by consistent theory. It can be said that 9-year-old children have already have a profound understanding of nutrition. They gradually developed naive theory of biology on nutrition level. 3) Even kindergarteners can understand the concept of “food balance”. However, with development there was a significant age increase in food balance choice. 4) Children’s knowledge of food balance grows with age, but urban and rural educational background influence cognitive performance.