143 resultados para Polymers -- Testing
Resumo:
Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
Hyperbranched vinyl polymers were prepared by reversible addition-fragmentation chain transfer ( RAFT) polymerization of a styrenic asymmetric divinyl monomer. This was achieved by using cumyl dithiobenzoate or S-dodecyl-S'-(alpha,alpha'-dimethyl-alpha ''-acetic acid) trithiocarbonate as the chain transfer agent, 1,1'-azobis(cyclohexanecarbonitrile) or thermal initiation as a source of radicals. Cross-linking was inhibited by a rapid RAFT-based equilibrium between active propagation chains and dormant species, and thus a hyperbranched polymer with a monomer conversion as high as 80% was obtained. The hyperbranched structure and properties of the resultant polymers were characterized by a combination of H-1-NMR spectroscopy and a triple detection size exclusion chromatography (TRI-SEC). The hyperbranched vinyl polymer has a broad molecular weight distributions and a low Mark-Houwink exponent alpha value compared with the linear counterpart.
Resumo:
We have synthesized macrocyclic polystyrene- (PS-) terminated PS star polymers via a core-cross-linking approach in this work. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via click chemistry and ATRP polymerization method. The "living" ATRP initiating chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-cross-linked macrocyclic star polymer. The number of arms attached to the macrocyclic star polymers was measured with NMR. and absolute molecular weights with gel permeation chromatography (GPC) with multiangle laser light scattering detector. These macrocyclic star polymers had a highly cross-linked core and many radiating arms. The shorter tadpole-shaped precursors caused core-cross-linked star polymers with higher molecular weights and more arm numbers. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.
Resumo:
The influence of the rigidity of polymer backbones on the side-chain crystallization and phase transition behavior was systematically investigated by a combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and high-resolution solid-state nuclear magnetic resonance spectroscopy (NMR). DSC investigation indicated that the crystallization number of alkyl carbon atoms of the side chains grafted onto the rigid polymer backbone, poly(p-benzamide) (PBA), is much lower than that of the alkyl carbon atoms of the side chains grafted onto the flexible polymer backbone, poly(ethyleneimine) (PEI), implying that the conformational state of the polymer backbones has a strong effect on the side-chain crystallization behavior in comblike polymers. WAXD and FTIR results proved that these two comblike polymers pack into hexagonal (PBA18C) and orthorhombic (PEI18C) crystals, respectively, depending on the adjusting ability of the polymer backbones for particular conformational states. It was also found that the presence of the crystalline-amorphous interphase (delta = 31.6 ppm) in PBA18C detected by solid-state C-13 NMR spectroscopy can be attributed to the rigid PBA backbone, which restricts the mobility of the alkyl side chains.
Resumo:
Order-disorder transition (ODT) behavior in eicosylated polyethyleneimine (PEI20C) comblike polymer obtained by grafting n-eicosyl group on polyethyleneimine backbone was systematically investigated by the combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy as well as solid-state high resolution nuclear magnetic resonance (NMR) spectroscopy. DSC investigations showed two obvious transitions, assigned to the transitions (1) from orthorhombic to hexagonal and (2) from hexagonal to amorphous phase, respectively. These transitions are induced by the variations of alkyl side chain conformation and packing structure with temperature changing, which consequently lead to the destruction of original phase equilibrium. The ODT behavior can also be confirmed by spectroscopic methods like WAXD, FTIR and NMR. The ordered structure and the transition behavior of the alkyl side chains confined by the PEI backbone are obviously different from those of pristine normal alkanes. The transition mechanism of ODT and the origin of the phase transition behavior in PEI20C comblike polymer were discussed in detail in this paper.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
A series of biodegradable polylactide-based polyurethanes (PLAUs) were synthesized using PLA diol (M-n = 3200) as soft segment, 4,4 '-diphenylmethane diisocyanate (MDI), 2,4-toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI) as hard segment, and 1,4-butanediol as chain extender. The structures and properties of these PLAUs were studied using infrared spectroscopy, differential scanning calorimetry, tensile testing, and thermomechanical analysis. Among them, the MDI-based PLAU has the highest T-g, maximum tensile strength, and restoration force, the TDI-based PLAU has the lowest T-g, and the IPDI-based PLAU has the highest tensile modulus and elongation at break. They are all amorphous. The shape recovery of the three PLAUs is almost complete in a tensile elongation of 150% or a twofold compression. They can keep their temporary shape easily at room temperature (20 degrees C). More importantly, they can deform and recover at a temperature below their T-g values. Therefore, by selecting the appropriate hard segment and adjusting the ratio of hard to soft segments, they can meet different practical demands for shape memory medical devices.
Resumo:
To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
A family of supramolecular polymers was prepared via Cd2+-directed self-assembly polymerization of his (2,2':6',2 ''-terpyridine)-based ligand monomers, using oligofluorenes and triphenylamine as bridges under mild conditions. The polymers were fully characterized using thermogravimetric analysis, inherent viscosity, electrochemical measurements, UV-visible spectroscopy, photoluminescence (PL) and electroluminescence (EL). Polymers with oligofluorenes as spacers exhibited blue emission (434-442 nm) in dimethyl acetamide (DMAc) solution, while polymers with triphenylamine as spacer presented an emission peak at 494 nn in DMAc solution. Complexation polymerization of bis(2,2':6',2 ''-terpyridine)-based ligand monomers with cadmium(II) improved fluorescence quantum yields dramatically, and the film PL quantum yields of these polymers were about 0.38-0.54. Single-layer light-emitting diodes were fabricated with the configuration indium tin oxide (ITO)/polymer/Ca/Al; the EL showed green emission and the onset voltages of the devices were 8-11 V.
Resumo:
In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.
Resumo:
The interfacial tension sigma between two polyisobutylenes (PIB) of dissimilar polydispersity and two polydisperse samples of poly(dimethylsiloxane) (PDMS) was measured as a function of time by means of a pendent drop apparatus at different temperatures ranging from 30 to 110 degreesC. In addition to three of the four possible binary blends, the time evolution of sigma was also determined for one ternary system, where the PIB phase contained 0.03 wt % of a diblock copolymer poly(isobutylene-b-dimethylsiloxane). The pronounced decrease of sigma with advancing time, observed in all cases, is attributed to the migration of the interfacially active lower molecular weight components of the homopolymers and of the compatibilizer into the interphase. Several days are normally required until a becomes constant. These time independent values are not considered as equilibrium data, but accredited to stationary states. A kinetic model is established for sigma(t), which enables a detailed investigation of the rates of transport of the different migrating species of average molar mass of M.