91 resultados para Pahs
Resumo:
采用实验室培养和室外盆栽试验相结合的方法,对石油污染土壤生物修复中存在的微生物适应性、矿物油和难降解污染物多环芳烃(PAHs)的生物修复生态过程和修复过程中的次生污染问题进行研究,旨在探讨微生物强化降解的影响因素和次生污染物的生成机制,为石油污染土壤的快速、完全生物修复提供实验依据和理论基础。 首先,通过人工调控的实验室摇床培养试验(周期为100天)和室外盆栽试验(周期为150天)研究了外源微生物的强化降解作用及土著微生物的适应性,结果表明,在石油污染土壤的生物修复中,外源专性细菌和真菌对矿物油和PAHs的降解在接种初期(<20d)具有优势;土著微生物对石油污染物的降解需要一个短期的适应过程,之后则表现出较强的降解优势,并很快抵消外源降解菌形成的早期优势。 其次,通过长期室外盆栽试验,分别采用L9(34)的正交设计(周期为5年)和两因素对比试验设计(周期为3年),探讨石油污染土壤生物修复中矿物油和PAHs降解的生态过程,以及有机肥添加、有无植物等因素对污染物生物降解的影响。结果表明,土壤中的矿物油随生物修复时间的延长,降解速度减慢,矿物油的降解主要发生在前2年内(降解率为88.5~95.1%)。经过植物修复,土壤中原始柴油组分发生很大变化,烷烃、环烷烃等低分子量的组分几乎完全降解,同时生成了一些次生代谢产物。土壤中可利用N、P等营养物质的匮乏是矿物油降解的限制性因子。污染物浓度水平决定对有机肥的需求,对污染程度较高的石油污染土壤,有机肥的添加显著促进矿物油和PAHs的降解。 最后,利用陆地生态系统食物链不同级别的代表性生物体(小麦和蚯蚓)的敏感指标(生长和生理生化指标),对经过修复处理的石油污染土壤的健康质量进行生态毒理学评价,结果表明,修复后的土壤对小麦和蚯蚓仍有一定的残留毒性,小麦根部指标和生理生化指标及蚯蚓分子毒理学指标对土壤污染状况的指示作用更敏感。
Resumo:
本文通过传统和现代微生物生态学方法,从土壤微生物数量、土壤底物诱导呼吸强度和微生物群落多样性角度,评价了长期污灌所致PAHs污染对土壤微生物特征的影响。结果发现沈抚灌区农田PAHs总量在表层为612.3-6362.81μg•kg-1干土,在亚表层为319.5-4318.51μg•kg-1干土。土壤微生物主要类群、功能群数量、微生物生物量碳和代谢商与土壤PAHs污染程度无明显相关性,土壤底物诱导呼吸强度和所试土壤酶与PAHs含量呈显著正相关,微生物商与PAHs含量呈显著负相关,可以作为土壤PAHs污染评价的敏感生化指标之一。污染稻田土壤细菌群落中优势菌群为β-和γ-变形细菌亚纲的成员,中度PAHs土壤的分支杆菌多样性指数较重度和轻度的略高,PAHs污染使一种或几种分支杆菌得到富集。长期污水灌溉造成土壤固氮细菌种群多样性降低,清水灌溉一段时间后,固氮细菌种群结构得到不同程度的恢复,但是,即使清灌不能使其种群结构得到完全恢复。 通过富集得到一株高效降解芘的细菌N12,经鉴定确认为分支杆菌。经10天培养菌株可将100mg•l-1芘降解97.84%。还可降解菲、苊、芴,不能降解萘、蒽和苯并[a]芘。污染土壤修复实验表明,单一接种菌剂对芘的降解率为57.42%,含N12的混合接种菌剂对芘的降解率为61.11%。
Resumo:
针对传统游离微生物修复技术的缺点和弊端,提出了采用固定化微生物技术修复受多环芳烃污染的非流体介质的新课题。本文筛选出2株高效降解菌,并进行了固定化载体筛选,优化并确定了3种固定化工艺。通过实验室模拟实验,考察了固定化菌对PAHs污染非流体介质的修复能力,最后通过扫描电子显微镜(SEM)分析,对固定化微环境强化修复机制进行了初步探讨。 细菌芽孢杆菌(Bacillus sp.,SB02)和真菌毛霉(Mucor sp.,SF06)对土壤中的Pyr、BaP降解率高,降解速率快,为高效降解微生物。 碱化后的泥炭土适宜作为细菌固定化载体;玉米芯适宜作为真菌固定化载体;改性后蛭石适宜作为混合菌固定化载体。这些载体来源广泛,成本低廉,工艺简单,安全无毒。 将固定化菌应用于Pyr、BaP污染土壤的修复,考察了初始接种量、环境温度、土壤含水量对固定化菌降解Pyr、BaP的影响,固定化菌对不同系列浓度Pyr、BaP的降解,以及固定化菌在不灭菌土壤中对Pyr、BaP的降解,表明固定化菌对土壤中Pyr和BaP的降解率均高出游离菌20%,固定化混和菌降解效果最好,其次是固定化真菌,再次是固定化细菌。 SEM分析了固定化颗粒的微观结构和微生物在颗粒内部的形态变化,结果表明颗粒内部丰富的疏松多孔结构和巨大的比表面积为微生物提供了适宜的生存空间,使吸附固定化成为可能。 固定化菌对沈抚灌区PAHs污染土壤修复效果非常理想,经过6个月,土壤中总PAHs的去除率达70.3%,高于游离菌。
Resumo:
辽宁省是以石油化工、煤炭化工和钢铁工业为主的重工业基地。辽河流域近年来经济发展迅速,城市化水平不断提高,但由于产业结构的不合理和污染治理水平的相对滞后,致使辽河流域水体污染严重。对辽河流域水体污染状况、污染物化学与生物学的相互作用、微生物群落结构与功能的关系开展调查研究,对开展污染水体的生物生态修复具有重要的指导意义。 本论文选取辽河流域干流8个水文监测站点的不同时期(丰水期和平水期)底质为研究对象,调查了有机污染物(总油TPHs)和有毒污染物(多环芳烃PAHs)污染程度以及主要来源;采用变性梯度凝胶电泳(DGGE)和磷脂脂肪酸(PLFA)两种分析方法,对其微生物群落结构及多样性进行了分析;并以13C标记的菲和芘为代谢底物,以PLFA为生物标记物,采用气相色谱-稳定同位素比率质谱(GC-c-IRMS)分析技术,鉴定了底质样品中参与菲和芘代谢的主要微生物类群;并利用不同的吸附性载体进行了芘降解菌的富集和筛选。 研究结果表明: 1)平水期总石油烃污染比丰水期严重,TPH 含量分别在276.1~560.6mg/kg(平水期)和157.9~462.2mg/kg(丰水期)之间,辽河入海口TPH污染最重;PAHs含量分别在124.1~270.4ug/kg(平水期)和93.5~209.1ug/kg(丰水期)之间;主要来源于石油类污染物和化石燃料的热解,汽车尾气的污染等。 2) 采用DGGE和PLFA两种方法分析微生物群落结构得到基本一致的结果。微生物多样性与总石油烃含量、总多环芳烃含量无显著相关性,多样性指数是多种污染物和环境因子综合影响的结果。 3) 稳定同位素代谢示踪实验表明,底质中存在菲和芘的降解菌群;参与菲和芘降解的微生物均以G-细菌为主,真菌次之;G+细菌和放线菌也参与代谢;参与菲和芘代谢的菌群有一定的相似性。 4) 利用不同吸附性载体从污染底质样品中筛选到6株降解菌。
Resumo:
本研究通过富集培养,从沈抚灌区石油污染土壤中分离到两株以芘为惟一碳源和能源生长的细菌,分别命名为ZHL-4和B61。经过形态观察、生理生化实验与16S rDNA序列分析鉴定,ZHL-4和B61分别为苍白杆菌属(Ochrobactrum)和假单胞菌属(Pseudomonas)。 ZHL-4和B61均对芘具有较强的降解能力,在不添加任何其它碳源的情况下,分别在7d内将10mg•L-1芘降解了71.8%和67.4%,各加入500mg•L-1的葡萄糖和酵母膏作为共代谢底物后,7d内对芘的降解率分别提高到86.8%和89.9%。 经电泳检测,菌株ZHL-4和B61均存在内生质粒。质粒消除实验表明,消除质粒后的菌株ZHL-4和B61不能利用芘进行生长;将质粒转化入大肠杆菌中后,转化子获得了在芘固体培养基上生长的能力,初步证明两株细菌的内生质粒是与芘代谢有关的降解性质粒,其降解芘的基因位于质粒上,这与其它高分子量PAHs降解菌的降解基因位于染色体上不同。 通过设计引物、PCR扩增,菌株ZHL-4和B61并不具有已报道的芘降解基因nidA,这表明ZHL-4和B61具有可能不同于nidA基因的新的芘降解基因,有待于进一步研究。
Resumo:
本文以多环芳烃污染土壤为研究对象,以菲(Phe)、芘(Pyr)和苯并[a]芘(BaP)为目标污染物,以建立生态、经济、高效污染土壤修复技术为目标,在研究植物与微生物联合修复多环芳烃污染土壤效果的基础上,重点研究了植物与微生物联合修复污染土壤过程中多环芳烃的去除机制。 研究结果表明:种植苜蓿和黑麦草能够促进土壤中多环芳烃的去除,提高土壤中多环芳烃的去除率。植物根际土壤中多环芳烃的去除速度快于于非根际土壤。在植物与高效降解菌联合作用过程中,植物的存在强化了菌剂对土壤中多环芳烃的去除作用。苜蓿和黑麦草与高效降解菌的联合作用使菲、芘和苯并[a]芘去除率分别比对照土壤提高了26.64%、30.41%、32.04%和26.93%、27.43%、30.15%。 植物根和茎叶中菲、芘和苯并[a]芘的含量与土壤污染物浓度正相关,但其吸收积累作用对土壤中多环芳烃去除的贡献率小于0.34%。植物对土壤多环芳烃污染的修复作用主要源于植物生长显著提高了根际微生物的降解活性。 植物根际微生物的数量和土壤酶活性显著高于非根际土壤。植物根系的存在提高了土壤中微生物的数量和酶活性,从而提高了土壤中PAHs的去除率。这是根际土壤中多环芳烃去除的主要机制。 模拟根际修复,研究了添加根系分泌物对土壤中芘降解的影响。添加20mg/kg根系分泌物土壤中细菌数量为未添加根系分泌物土壤的19.43-36.29倍,真菌为3.05-6.60倍,土壤中芘的半衰期比未添加根系分泌物处理减少10.91天。植物根系分泌物是影响根际修复的一个重要原因。
Resumo:
仅以污染物浓度定义土壤污染并评价其潜在风险,缺乏对其生态毒性效应的综合考虑,不能反映土壤污染对生物及人体健康的潜在危害。传统的生态毒理研究仅局限于依据宏观生理指标,如半致死剂量,产茧量等,这些指标对环境浓度(亚致死浓度)土壤污染的响应较差甚至不响应,无法应用于环境浓度的污染土壤诊断。土壤生物微观生理、生化指标,作为一种较为敏感的土壤生态毒理效应及毒性诊断手段,近几年来成为研究热点。 本文以赤子爱胜蚓(Eisenia fetida)为供试生物,草甸棕壤为供试土壤,以国际标准组织(International Standard Organization-ISO)方法指南为参考,以蚯蚓微粒体细胞色素P450含量、抗氧化酶系(超氧化物歧化酶-SOD、过氧化氢酶-CAT和过氧化物酶-POD)和谷胱甘肽转移酶(GST)活性为指标,进行了的典型多环芳烃污染物-苯并(a)芘和内泌干扰物-壬基酚在土壤中暴露的动态量效关系研究,试验浓度范围为0.1-2 mg•kg -1。 研究结果如下:1)苯并(a)芘与细胞色素P450含量具有动态响应关系。总体上,诱导效应明显,诱导时间对P450活性影响显著(P<0.05);2)在试验浓度范围(0.1-2 mg•kg-1)内, GST对试验浓度的BaP未产生生态毒性响应;3)CAT 和POD酶活性对低浓度的BaP暴露响应具有延时性(即第7d开始响应)和阶段性(即第7d前无明显响应、第7d后响应消失)特征;4) 在BaP胁迫下,蚯蚓体内SOD产生明显响应,苯并(a)芘暴露1~3d,SOD酶活性整体升高,最大升幅30%,与对照差异显著。苯并(a)芘暴露的第7d和14d, 除0.1 mg•kg -1外,0.5~2 mg•kg-1 BaP处理组中SOD酶活性均显著降低(P<0.05),这表明BaP造成了抗氧化防御酶系的损伤。以上结果表明: 5项指标中, 代谢解毒酶系指标P450和抗氧化酶系指标SOD对BaP暴露响应较为敏感,CAT,POD以及GST的敏感性较差。各指标敏感性总体为:P450>SOD>CAT,POD>GST。综合本试验及其他相关实验结果初步确认,苯并(a)芘生态毒性>芘>菲。 低浓度(0.1~2.0 mg•kg-1)壬基酚(NP)土壤暴露动态关系研究结果表明:1)壬基酚(NP)与细胞色素P450含量具有动态响应关系。1、7、14d时,P450整体表现为低浓度下抑制,而高浓度下诱导的趋势。随着诱导时间的延长P450含量表现出显著的升高趋势;SOD活性在较高浓度3d暴露后降低,而第7、14d时显著升高。NP诱导与P450含量与SOD酶活性两种指标的响应趋势与BaP诱导下的响应趋势大体吻合。CAT的响应较前两者差,随着诱导时间的延长,在第7、14d个别浓度下CAT表现出升高趋势。GST与POD对试验浓度下的NP诱导未产生明显和快速的毒性响应。NP诱导第3dGST出现升高趋势。NP诱导的第14d POD (2 mg•kg-1)有显著降低。总体上,各指标对NP诱导的敏感性顺序依次为:P450,SOD>CAT>GST, POD。 继前期的“蚯蚓P450对土壤菲、芘暴露生态毒理研究”以及“土壤低浓度PAHs胁迫下蚯蚓差异表达基因筛选研究”之后,本论文中所进行的“土壤BaP暴露生态毒性响应研究”作为上述整体研究内容的组成部分,从两个方面获得研究进展:第一,进一步证实P450指标对低剂量多环芳烃污染响应的相对敏感性。第二,从代谢解毒酶系的角度发现苯并(a)芘生态毒性>芘>菲。这一结果与基因水平上论证的细胞色素P450(类似Cyp2R1)对 PAHs胁迫下的研究结果一致。 本论文中进行的土壤NP暴露生态毒性响应研究,首次将内分泌干扰物纳入土壤毒理研究中,丰富了土壤生态毒理学的研究内容。研究进一步证实蚯蚓细胞色素P450指标对多种污染物低剂量暴露诊断的广谱适应性。研究也为内分泌干扰物的生态毒性评价提供了基础依据。
Resumo:
本论文以镉超富集植物龙葵(Solanum nigrum L.)为材料,研究化学强化剂对龙葵修复镉-多环芳烃复合污染的作用,并对筛选出的强化剂在不同浓度水平镉-多环芳烃复合污染土壤的适用性进行研究,以期为镉-多环芳烃复合污染土壤的植物修复强化技术提供理论指导。 (1)采用室内盆栽试验的方法,研究外源半胱氨酸、谷氨酸、甘氨酸及其复合处理对超富集植物龙葵修复镉-多环芳烃复合污染土壤的影响。试验表明,各浓度水平的单因素处理对植物株高及地上部干重并没有显著影响(p>0.05),而复合处理则具有显著的促进作用(p<0.05)。各处理能够显著增强龙葵对镉的吸收和富集能力,其中半胱氨酸处理使重金属提取率分别达到1.80%及1.83%,与对照相比提高1.80及1.83倍。研究发现甘氨酸、谷氨酸及半胱氨酸复合处理能够促进镉及多环芳烃在土壤环境中的去除作用,且0.3mmol•kg-1甘氨酸+0.3mmol•kg-1谷氨酸+0.3mmol•kg-1半胱氨酸处理效果最佳,与对照相比龙葵地上部Cd含量增加2.26倍,土壤多环芳烃总量的去除率提高5.46倍。 (2)采用室内盆栽试验的方法,研究EDTA、水杨酸、TW80及其复合处理对超富集植物龙葵修复镉-多环芳烃复合污染土壤的影响。研究发现,单因素EDTA处理对龙葵具有很强的植物毒性作用,显著降低了龙葵地上部干重(p<0.05)。水杨酸及TW80处理促进了土壤中多环芳烃的生物降解作用,其中以0.9mmol•kg-1水杨酸处理效果最佳,芴、苯并(a)蒽、 、苯并(b)荧蒽、苯并(a)芘及苯并(g,h,i) 的降解率分别达到52.3、35.1、60.7、54.5、69.3及68.8%。此外,研究结果显示水杨酸对龙葵地上部提取镉总量具有很好的促进作用,即水杨酸处理能够促进污染物镉和多环芳烃的在土壤环境中的去除作用。 同样,复合处理0.1mmol•kg-1EDTA+0.5mmol•kg-1TW80和0.5mmol•kg-1EDTA+0.3mmol•kg-1水杨酸对以上两种污染物的去除均有很好的促进作用,表明在化学强化剂的协助条件下利用超富集植物修复重金属和有机复合污染土壤是可行的。 (3)采用室外盆栽试验的方法,研究化学强化剂0.1mmol•kg-1EDTA、0.9mmol•kg-1半胱氨酸、0.9mmol•kg-1水杨酸、0.3mmol•kg-1TW80及其复合处理对不同类型的镉和苯并(a)芘土壤修复适用性进行研究。研究发现,高浓度镉和苯并(a)芘对其在土壤环境中的去除产生抑制作用,其抑制强度随浓度的升高而增强。研究结果显示,不同类型的污染土壤对化学强化剂的需求不同,当土壤投加5mg•kg-1Cd时,EDTA+半胱氨酸及EDTA处理对龙葵吸收镉具有显著的促进作用,而土壤镉投加浓度为15mg•kg-1Cd时,仅EDTA+半胱氨酸处理的促进效果最佳;当土壤投加1mg•kg-1Bap时,水杨酸+TW80处理能够显著增强Bap的降解作用,而土壤投加2mg•kg-1Bap时,TW80处理的强化效果最佳;当土壤投加5mg•kg-1Cd和1mg•kg-1Bap时,水杨酸+TW80+EDTA处理对土壤中两种污染物去除均有很好的促进作用,而土壤投加15mg•kg-1Cd和2mg•kg-1Bap时,半胱氨酸+TW80处理效果最佳。
Resumo:
本论文通过室内土柱淋溶模拟实验和室外冻融土柱淋溶模拟实验,研究阴离子表面活性剂LAS和非离子表面活性剂Tween-80及三种多环芳烃(PAHs)菲、芘、苯并(a)芘在土壤中迁移的状况,研究表面活性剂类型、浓度对PAHs在土壤中迁移的影响及冻融交替产生的优先水流对二者在土壤中产生优先迁移的作用。结果表明,表面活性剂在土壤中虽有较强的迁移能力,但是它们在土壤中可以形成土壤-表面活性剂复合体从而导致其在土壤中吸附量也较大。实验所用三种多环芳烃在土壤中的迁移难度BaP > 芘 > 菲。表面活性剂的施加并不能改变它们的相对迁移能力。实验结果表明:两种表面活性剂LAS和Tween-80的投加均可以促进PAHs在土柱中的迁移,它们可以使土柱中PAHs的淋出锋值提前,而且PAHs的累积淋出量也较对照高。两种表面活性剂对PAHs累积淋出量的贡献LAS > Tween-80。表面活性剂各浓度处理对PAHs在土壤中的迁移影响差异并不显著,即使使用2CMC(纯水浓度)表面活性剂淋洗土柱,其对PAHs在土壤中迁移的也没有显著促进作用,可能是由于土壤中表面活性剂的有效CMC浓度要远大于纯水中CMC 浓度之故。实验验证了冻融交替过程可以产生土壤大孔隙和优先水流,从而可以造成土壤污染物的俦迁移。
Resumo:
多环芳烃(PAHs)作为一种普遍的环境污染物已开始在一些地区的土壤中高度富集,特别是在与石油、天然气和木材防腐有关的工厂所在地尤为如此。它们作为优先环境污染物而引起人们的关注是因为其中的许多种类已被证明是致癌物、致畸物和诱变剂。多环芳烃在土壤中具有相对稳定性,因此它比一般有机污染物更难降解。生物泥浆反应器已被国外证明是最有效的有机污染土壤清洁方法。本项研究利用自设计的国内第一个生物泥浆反应器对污染土壤中的多环芳烃在生物泥浆反应器中的降解条件进行研究,并优化其运行工艺参数。本研究采用三环的菲和四环的芘作为多环芳烃供试化学品。处理装置为小型的生物泥浆反应器(15L/个)。反应器配备搅拌、通气和温度控制装置,在好氧条件下进行。本项研究设计了七组不同的处理条件:不同的起始浓度(PAHs)、不同的温度(10℃,20℃,30℃)、不同的微生物接种量(5%,10%,15%,20%[W/W])、不同的表面活性剂浓度(Tween-80),研究了生物泥浆反应器在不同处理条件下对多环芳烃污染土壤的净化效果。研究结果表明,温度变化、表面活性剂浓度、接种量均对菲和芘的生物降解有明显影响。菲(3环)在生物泥浆反应器中其浓度很快降低,在360小时内去除率达97%。芘(4环)在实验浓度下下降相对较慢,360小时最高去除率也可达87%以上,平均去除率为50%以上,去除效果明显。在本研究中,多环芳烃在反应器中生物降解的最佳条件是20℃-30℃、水土比为2/1、接种量为5%、添加Tween-80的浓度为10mg/kg。本项研究首次将多环芳烃的生物泥浆反应器降解过程分为两个阶段,第一阶段是多环芳烃的快速降解阶段;第二阶段是降解停滞阶段。指出共代谢底物应在第二阶段投加为宜;研究了影响菲与芘生物半减期的因素;指出了初始浓度对菲与芘生物降解效果的不同影响;对泥浆反应器处理PAHs的运行条件进行了较为全面的研究,为这一技术的广泛应用奠定了基础。
Resumo:
本研究通过选择性富集培养,从辽河油田稠油污染土壤中获得了能以2000mg·L~(-1)菲为唯一碳源和能源快速生长的优势降解菌株ZL5,经165 roNA序列分析认其属变形细菌a亚类中的鞘氨醇单胞菌属。ZL5菌株具有较强的降解菲、花能力,但是不能以蔡为唯一碳源和能源生一氏。外加碳源葡萄糖能有效促进PAHs降解,降解率提高达18.21-23.5%,但糖过量会表现出抑制效应。菌株ZL5含有一个大小约为60 kb的内生大质粒。丝裂霉素C消除试验表明,随着质粒丢失,菌株利用菲和花的能力也丧失。应用电转化和氯化铆转化将质粒导入大肠杆菌中,转化子获得了相应的降解菲、花能力,表明菌株ZLS的内生大质粒是与代谢PAHs功能有关的降解质粒。菌株ZL5具有PAHs诱导的邻苯二酚2,3-双加氧酶酶活(C230),指明其能以菲为唯一碳源和能源生长但不能降解蔡的原因可能为一未见报道的菲代谢新途径-水杨酸和邻苯二酚途径。采用特异性引物,扩增菌株ZLS的C230编码基因全序列,再与表达载体pET-30a(+)连接,实现了在E.coli JM109(OE3)中的高效表达。SDS-PAGE结果表明:C230蛋白不仅在细胞内存在,也能被大量地分泌到胞外,属国内首次报道。经Southern杂交,将菌株ZLS的C230基因定位在内生大质粒的不同酶切片段上。
Resumo:
运用土壤学、微生物学、生态学和统计学方法,系统地开展了石油污染土壤的植物-微生物联合修复研究,对植物-微生物修复的生态影响进行了分析,并从根际微生物区系变化与根分泌物特性两个角度深入探讨了污染土壤植物一微生物联合修复的机理。室内模拟、室外盆栽、田间微区实验的结果表明:(1)植物-微生物联合修复对不同浓度石油烃污染土壤有较好的修复效果,125d的修复周期中对土壤中石油污染物的降解率为7.1%-69.8%,随污染物浓度的升高,联合修复对土壤中污染物的降解作川增强;(2)植物一微生物联合修复作用可能会长期持续,并对难降解物质PAHs存在修复潜力;(3)在本实验条件下,采用经济作物与降解微生物联合修复会降低土壤有机质含量,对土壤生态系统的结构和功能不会产生严重的干扰,对土壤生态环境的影响可以在短时间恢复;(4)植物一微生物联合作用方式在于植物与微生物的相互作用,作用区为植物根际,微生物在植物根际区域的种类数量和生化特征存在差异;植物分泌物对于微生物具有调节作用,促使污染物的生物降解。并以本试验研究为例,进一步探讨石油污染土壤植物一微生物联合修复的机理,利石油污染土壤的植物一微生物联合修复的影响因子进行调控研究,联合修复的主要影响因子是营养因子,其次是污染物浓度。石油污染土壤的植物一微生物联合修复研究,对土壤微生物群落,植物根际效应及潜在自然生物降解获得了进一步的理解,为污染土壤修复技术提供了科学依据和理论支持。
Resumo:
研究了3株多环芳烃(PAHs)高效降解菌对土壤中芘和苯并芘(BaP)的降解动态,用Michaelis-Menton和Monod动力学模型对结果进行拟合.结果表明,3株细菌对芘和BaP的降解率有显著性差异.芽孢杆菌(Bacillus sp.SB02)42 d对芘和BaP的降解率均最高.当土壤中芘和BaP的初始浓度为50 mg/kg时,芽孢杆菌(Bacillus sp.SB02)、动胶杆菌(Zoogloea sp.SB09)、黄杆菌(Flavobacterium sp.SB10)42 d对芘的降解率分别为42.69%、32.88%、25.07%,对BaP的降解率分别为33.04%、25.39%、22.02%.3株细菌对芘和BaP的降解速率也存在显著性差异.芽孢杆菌(Bacillus sp.,SB02)最快,1周可降解20.88%芘和12.6%的BaP,动胶杆菌(Zoogloea sp.SB09)次之,黄杆菌(Flavobacterium sp.SB10)降解速率最慢.
Resumo:
多环芳烃化合物(PAHs)由于致癌、致畸和致突变而受到广泛关注。本实验以多环芳烃菲(Phe)为目标污染物,研究了温度、腐植酸和紫外辐射强度对Phe光降解的影响并对不同因素对降解动力学的影响作了研究。结果表明,Phe的降解在20℃到30℃范围内,随着温度的升高,光降解率增加;腐植酸在Phe污染土壤的光降解中起敏化作用,可显著促进光解,腐植酸浓度为5mg·kg-1足以达到敏化的效果;Phe光降解速率常数随辐射强度的降低而降低,呈正相关,光解的半衰期随着辐射强度的降低而增加,呈负相关。
Resumo:
多环芳烃(PAHs)是环境中广泛存在的一类有机污染物。它的降解一直是人们关注的课题。光降解就是多环芳烃降解的一种重要形式。对在气相、液相和固相不同介质中的PAHs光降解研究进行了综合论述,重点对PAHs在液相介质的降解速率及影响因素、中间产物及降解机制和反应动力学进行了深入探讨,并介绍了光-生物耦合降解多环芳烃的研究进展。建立系统而有效的PAHs光降解研究技术与方法,是目前当务之急。进一步完善PAHs光降解研究的技术与方法,可更准确地研究PAHs光降解机制及影响因素。