234 resultados para PVC matrix
Resumo:
Based on Maxwell's equations, standard boundary conditions are imposed on resultant electric- and magnetic-field vectors at interfaces, and the propagating characteristics of extraordinary waves, such as the forward- and backward-propagating directions of wave vectors, rays and their corresponding refractive indices are determined in a uniaxially birefringent thin film. Furthermore, 2 x 2 characteristic matrices of a birefringent thin film are derived including multiple reflections for the extraordinary wave.
Resumo:
As the principal section consistent with the principal plane, electromagnetic propagation in a uniaxially birefingent thin film can be described with a concise 2 x 2 characteristic matrix, in which the refractive indices of the forward and backward propagating extraordinary rays are different and dependent. In this letter, based on Huygen's construction, the refractive indices and effective optical admittances of the forward and backward propagating extraordinary rays are discussed further, and the 2 x 2 characteristic matrix is simplified. Furthermore, the input optical admittance, reflectance and transmittance of assembly is presented, just as an isotropic thin film. The result can be extended to the general case of multilayer uniaxially birefringent thin films with their optic axes in the incident plane. Copyright (c) EPLA, 2007.
Resumo:
Accumulating evidence suggests that unicellular Archezoa are the most primitive eukaryotes and their nuclei are of significance to the study of evolution of the eukaryotic nucleus. Nuclear matrix is an ubiquitous important structure of eukaryotic nucleus; its evolution is certainly one of the most important parts of the evolution of nucleus. To study the evolution of nuclear matrix, nuclear matrices of Archezoa are investigated. Giardia lamblia cells are extracted sequentially. Both embedment-free section EM and whole mount cell EM of the extracted cells show that, like higher eukaryotes, this species has a residual nuclear matrix in its nucleus and rich intermediate filaments in its cytoplasm, and the two networks connect with each other to form a united network. But its nuclear matrix does not have nucleolar matrix and its lamina is not as typical as that of higher eukaryotes; Western blotting shows that lamina of Giardia and two other Archezoa Entamoeba invadens and Trichomonas vaginali all contain only one polypeptide each which reacts with a mammalia anti-lamin polyclonal serum and is similar to lamin B (67 ku) of mammlia in molecular weight. According to the results and references, it is suggested that nuclear matrix is an early acquisition of the eukaryotic nucleus, and it and the "eukaryotic chromatin" as a whole must have originated very early in the process of evolution of eukaryotic cell, and their origin should be an important prerequisite of the origin of eukaryotic nucleus; in the iamin (gene) family, B-type lamins (gene) should be the ancestral type and that A-type lamins (gene) might derive therefrom.
Resumo:
Euglena gracilis cell was extracted sequentially with CSK-Triton buffer, RSB-Magik solution and DNase-As solution. DGD embedment-free electron microscopy showed that in the extracted nucleus there was a residual non-chromatin fibrous network. That it could not be removed by hot trichloroacetic acid further supported the idea that it was a non-histone, non-chromatin fibrous protein network, and should be the internal network of the nuclear matrix. After the sequential extraction, the nuclear membrane was removed, leaving behind a layer of lamina; the chromatin was digested and eluted from the dense chromosomes and residual chromosomal structures that should be chromosomal scaffold were revealed. Western blot analysis with antiserum against rat lamins showed that nuclear lamina of the cell possessed two positive polypeptides, a major one and a minor one, which had molecular masses similar to lamin B and lamin A, respectively. Comparing these data with those of the most primitive eukaryote Archezoa and of higher eukaryotes, it was suggested that the lower unicellular eukaryote E. gracillis already had the nuclear matrix structure, and its nuclear matrix (especially the lamina) might represent a stage of evolutionary history of the nuclear matrix. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
A macro matrix solid-phase dispersion (MSPD) method was developed to extract 266 pesticides from apple juice samples prior to gas chromatography-mass selective detection (GC-MSD) determination. A 10 g samples was mixed with 20 g diatomaceous earth. The mixture was transferred into a glass column. Pesticide residues were leached with a 160 mL hexane-dichloromethane (1:1) at 5 mL/min. Two hundred and sixty-six pesticides were divided into three groups and detected by GC-MSD under selective ion monitoring. The proposed method takes advantage of both liquid-liquid extraction and conventional MSPD methods. Application was illustrated by the analysis of 236 apple juice samples produced in Shaanxi province China mainland this year. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Superluminescent diodes were fabricated by using InAs-AlGaAs self-assembled quantum dots (QDs) as the active region. The ultrawide emitting spectrum of 142 nm was achieved. The short migration length of indium adatoms on AlGaAs surface increases the size dispersion of InAs QDs, resulting in the broadening of optical gain spectrum.
Resumo:
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
Resumo:
We measured the wear resistances of alumina, alumina/silicon carbide composite and alumina/mullite composite by abrasive wear. And we studied the influence of fracture mode and worn surface pullout on wear resistance. The results are as follows: the main wear mechanisms of alumina and alumina/silicon carbide were fracture wear and plastic wear respectively, and for alumina/mullite composite, fracture wear and plastic wear mechanisms worked together. The wear resistance of the alumina/silicon carbide composite and the alumina/mullite composite was better by a factor of 1 similar to 3 than that of the monolithic alumina. There were two main reasons for the better wear resistance, i.e., the improved mechanical properties and the more smooth worn surfaces. However, The primary reason was the reduction of area fraction of pullout on the worn surfaces induced by fracture mode transition. (C) 2007 Published by Elsevier B.V.
Resumo:
Electron-spin dynamics in InAs/GaAs heterostructures consisting of a single layer of InAs (1/3-1 monolayer) embedded in (001) and (311)A GaAs matrix was studied by means of time-resolved Kerr rotation spectroscopy. The spin-relaxation time of the submonolayer InAs samples is significantly enhanced, compared with that of the monolayer InAs sample. The electron-spin-relaxation time and the effective g factor in submonolayer samples were found to be strongly dependent on the photogenerated carrier density. The contribution from both the D'yakonov-Perel' mechanism and Bir-Aronov-Pikus mechanism are discussed to interpret the temperature dependence of spin decoherence at various carrier densities.
Resumo:
Different submicron ferromagnets are fabricated into GaAs and GaAs/AlGaAs superlattice through ion implantation at two different temperatures followed by thermal annealing. The structural and magnetic properties of the granular film are studied by an atomic force microscope, X-ray diffraction and alternating gradient magnetometer. By analyzing the saturation magnetization M-s, remanence M-r, coercivity H-c and remanence ratio S-q, it is confirmed that both MnGa and MnAs clusters are formed in the 350degreesC-implanted samples whereas only MnAs clusters are formed in the room-temperature implanted samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
InAs self-organized nanostructures in In0.52Al0.48As matrix have been grown on InP (001) substrates by molecular beam epitaxy. The morphologies of the nanostructures are found to be strongly dependent on the growth rate of the InAs layer. By increasing the growth rate from 0.005 to 0.35 ML/s, the morphology of the nanostructure changes from wire to elongated dot and then changes back to wire again. Polarized photoluminescence of the InAs quantum wires and quantum dots are performed at 77 K, which are characterized by strong optical anisotropies. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A detailed analysis of the photoluminescence (PL) from Si nanocrystals (NCs) embedded in a silicon-rich SiO2 matrix is reported. The PL spectra consist of three Gaussian bands (peaks A,B, and C), originated from the quantum confinement effect of Si NCs, the interface state effect between a Si NC and a SiO2 matrix, and the localized state transitions of amorphous Si clusters, respectively. The size and the surface chemistry of Si NCs are two major factors affecting the transition of the dominant PL origin from the quantum confinement effect to the interface state recombination. The larger the size of Si NCs and the higher the interface state density (in particular, Si = O bonds), the more beneficial for the interface state recombination process to surpass the quantum confinement process, in good agreement with Qin's prediction in Qin and Li [Phys. Rev. B 68, 85309 (2003)]. The realistic model of Si NCs embedded in a SiO2 matrix provides a firm theoretical support to explain the transition trend.
Resumo:
A folding nonblocking 4 X 4 optical matrix switch in simplified-tree architecture was designed and fabricated on a silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were connected by total internal reflection mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide (KOH) anisotropic chemical etching of silicon was employed. The device has a compact size of 20 X 3.2 mm(2) and a fast response of 8 +/- 1 mu s. Power consumption of 2 x 2 SE and excess loss per mirror were 145 mW and -1.1 dB, respectively. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A rearrangeable nonblocking 4 x 4 thermooptic silicon-on-insulator waveguide switch matrix at 1.55-mu m integrated spot size converters is designed and fabricated for the first time. The insertion losses and polarization-dependent losses of the four channels are less than 10 and 0.8 dB, respectively. The extinction ratios are larger than 20 dB. The response times are 4.6 mu s for rising edge and 1.9 mu s for failing edge.