56 resultados para PROBABILITIES
Resumo:
The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.
Resumo:
Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.
Resumo:
The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H + CH4-->H-2 + CH3 using time-dependent wave-packet method. The reaction probabilities for producing H-2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abstraction is favored due to tunnelling effect. In partially deuterated CHxDy (x + y = 4), the breaking of the C-H bond is favored over that of the C-D bond in the entire energy range studied. In H + CHD3 reaction at high energies, the HD product dominates simply due to statistical factor. (C) 2003 American Institute of Physics.
Resumo:
We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as robustness ratio ( RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network. Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level. It may provide an optimal criterion for network wiring connections and design.
Resumo:
Ca2Al2SiO7:Eu3+ was prepared by the sol-gel method. Through the emission spectrum of Eu3+ ion, the fluorescence parameters such as Omega(i) (i = 2,4) and radiative transition probabilities of D-5(0)-F-7(j) were calculated. The Pb2+ ion with bigger radius has an effect on the fluorescence spectra of Eu3+ which can be explained by the structure of the matrix. Simultaneously, the energy transfers between mercury-like ions (Pb2+ and Bi3+) and Eu3+ ion were observed. The D-5(4) and D-5(2) energy levels of Eu3+ are the resonance ones for Pb2+ ion.
Resumo:
LaC2 (with doublet and quartet states) and LaC2+ (with singlet and triplet states) cluster have been studied by using the B3LYP (Becke three-parameter/Lee-Yang-Parr) density functional method and the HF (Hartree-Fock) method with LANLIDZ basis set. For each cluster, four possible isomers in C-2v, C-s, C-proportional to v and D-proportional to h symmetries have been investigated. The results indicate that structures in C-s symmetry are local minima in all cases and, in most cases (particularly for high spin states), our initial guess in C-s symmetry converges to structures in C-2v symmetry. For the isomers in C-2v, C-proportional to v and D-proportional to h symmetries, local minima were found to be dependent on the method and spin state. The two clusters may also exist as linear chains. The ordering of the binding energies for the isomers in all spin states is C-s similar to C-2v < C-proportional to v < D-proportional to h. The ionization potential of LaC2 is reported as well. (C) 1998 Elsevier Science B.V.
Resumo:
LaC3n+ (n = 0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional method. The basis set is Dunning/ Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C-2 upsilon symmetry, the other two are Linear chains with C-infinity upsilon symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C-2 upsilon symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The ansa-zirconocene derivative tetramethyldisiloxandiyl bis(1-indenyl) zirconium dichloride (1) has been prepared by the reaction of the dilithium salt of 1,3-bis(l-indenyl) tetramethyldisiloxane with ZrCl4 . 2THF, After catalytic hydrogenation, the corresponding tetrahydroindenyl complex (2) has been formed. Both 1 and 2 have been shown by H-1 NMR spectra to be the mixture of the cis(meso) and trans(rac) isomers, The pure trans isomers 1(l), 2(l) and cis isomer 2(c) were obtained by recrystallization, The crystal structures of 1(l) and 2(c) were determined by X-ray diffraction. Both crystals of 1(l) and 2(c) are monoclinics, belonging to space groups P2(1)/n(1(l)) and P2(1)/c(2(c)). In the unit cell of 2(c), one of the six-membered rings of the tetrahydroindenyl Ligands has two different conformations which have the same probabilities.
Resumo:
在多机器人系统中 ,评价一个机器人行为的好坏常常依赖于其它机器人的行为 ,此时必须采用组合动作以实现多机器人的协作 ,但采用组合动作的强化学习算法由于学习空间异常庞大而收敛得极慢 .本文提出的新方法通过预测各机器人执行动作的概率来降低学习空间的维数 ,并应用于多机器人协作任务之中 .实验结果表明 ,基于预测的加速强化学习算法可以比原始算法更快地获得多机器人的协作策略 .
Resumo:
Research on children's naive concepts has previously tended to focus on the domains of physics and psychology, but more recently attention has turned to conceptual development in biology as a core domain of knowledge. Because of its familiarity, illness has been a popular topic for researchers in this domain. However, they have only studied the children’s understanding of its causes. Other aspects of illness, such as treatment and prognosis, have received little attention. This research addresses the development of 5- to 9-year-old children’s understanding of the causes of illness and their probabilities via open-ended and forced choice interviews. The results of this research are: 1) Most of the 5- to 7-year-old children used behavioral causes to explain illness, and the 9-year-old children primarily used biological causes to interpret illness. With age, more and more children selected psychological causes to explain illness. 2) Pre-school children did not over-generalize contagions to non-contagious illnesses. They used behavioral and biological causes to explain contagious illnesses. For non-contagious illnesses, they chose only behavioral causes. 3) Most of the children used only one kind of cause to explain illness. 4) Some preschool-aged children viewed outcomes of familiar causes of illness as probabilistic. With age, more and more could make uncertain predictions of illness. 5) The children’s understanding of the causes’ probabilities appeared to be based on naïve biology. 5- to 9-year-old children often made probabilistic predictions by analyzing a single cause of illness. 6) Children coming from higher educational backgrounds outperformed their counterparts coming from lower educational backgrounds with respect to understanding illness. 7) Specific knowledge acquired could generally improved the preschoolers’ understanding of causes of illness and their probabilities.
Resumo:
The dynamical Lie algebraic approach developed by Alhassid and Levine combined with intermediate picture is applied to the study of translational-vibrational energy transfer in the collinear collision between an atom and an anharmonic oscillator. We find that the presence of the anharmonic terms indeed has an effect on the vibrational probabilities of the oscillator. The computed probabilities are in good agreement with those obtained using exact quantum method. It is shown that the approach of dynamical Lie algebra combining with intermediate picture is reasonable in the treating of atom-anharmonic oscillator scattering.