175 resultados para POLYSILOXANE-BLOCK-POLYIMIDES
Resumo:
An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.
Resumo:
Docetaxel (DX) is one of the most effective antineoplastic drugs. Its current clinical administration is limited because of its hydrophobicity and Serious side effects. A polymer/DX conjugate is designed and successfully prepared to solve these problems. It is monomethoxy-poly(ethylene glycol)-block-poly(L-lactide)/DX (MPEG-PLLA/DX) It was synthesized by reacting DX with carboxyl-terminated copolymer MPEG-PLLA, which was prepared by reacting succinic anhydride with hydroxyl-terminated copolymer monomethoxy-poly(ethylene glycol)-block-poly (L-lactide) (MPEG-PLLA). Its structure and molecular weight was confirmed by H-1 NMR and GPC. The MPEG-PLLA/DX micelles in aqueous solution were prepared Using a SO]vent displacement method and characterized by dynamic light scattering for size and size distribution, and by transmission electron microscopy for surface morphology. Its antitumor activity against HeLa cancer cells evaluated by MTT assay showed that it had a similar antitumor activity to Pure D at the same drug content.
Resumo:
A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.
Resumo:
A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.
Resumo:
The anionic copolymerization process of styrene-buradiene (S/B) block copolymer in a closely intermeshing co-rotating twin screw extruder with butyl-lithium initiator was studied. According to the anionic copolymerization mechanism and the reactive extrusion characteristics, the mathematical models of monomer conversion, average molecular weight and fluid viscosity during the anionic copolymerization of S/B were constructed, and then the reactive extrusion process was simulated by means of the finite volume method and the uncoupled semi-implicit iterative algorithm. Finally, the influence of the feeding mixture composition on conversion was discussed. The simulated results were nearly in agreement with the experimental results.
Resumo:
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new there exists E-shaped amphiphilic block copolymer, (PMMA)(2)-PEO-(PS)(2)-PEO-(PMMA)(2) [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso-2,3-dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)(2)-PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm-4 amphiphilic block copolymer, (HO-PEO)(2)-PS2, was esterified with 2,2-dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the there exists E-shaped amphiphilic block copolymer.
Resumo:
A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.
Resumo:
A series of novel oxidation and water stable sulfonated polyimides (SPIs) were synthesized from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), and wholly aromatic diamine 2,2'-bis(3-sulfobenzoyl) benzidine (2,2'-BSBB) for proton exchange membrane fuel cells. These polyimides could be cast into flexible and tough membranes from m-cresol solutions. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendant groups. Moreover, all BTDA-based SPI membranes exhibited much better water stability than those based on the conventional 1,4,5,8-naphthalenecarboxylic dianhydride. The improved water stability of BTDA-based polyimides was attributed to its unique binaphthalimide structure. The SPI membranes with ion exchange capacity (IEC) of 1.36-1.90 mequiv g(-1) had proton conductivity in the range of 0.41 x 10(-1) to 1. 12 x 10(-1) S cm(-1) at 20 degrees C. The membrane with IEC value of 1.90 mequiv g(-1) displayed reasonably higher proton conductivity than Nafion((R)) 117 (0.9 x 10(-1) S cm(-1)) under the same test condition and the high conductivity of 0.184 S cm(-1) was obtained at 80 degrees C. Microscopic analyses revealed that well-dispersed hydrophilic domains contribute to better proton conducting properties. These results showed that the synthesized materials might have the potential to be applied as the proton exchange membranes for PEMFCs.
Resumo:
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)-catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/degrees C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99-4.20 barrer and 5.55-7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability.
Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit
Resumo:
A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 degrees C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.
Resumo:
A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and I afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in in-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 degrees C and 526 to 565 degrees C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 degrees C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.
Resumo:
A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).
Resumo:
Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film
Resumo:
Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.