245 resultados para POLYANILINE NANOFIBERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroactivity of polyaniline was extended to pH = 14 alkaline media by preparation of a novel electrostatic interaction conductive hybrid from water-borne conductive polyaniline and silica network containing carboxyl groups via sol-gel process. In addition, the obtained conductive polyaniline hybrid film displayed very low conductivity threshold percolation and demonstrated excellent stability upon cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the mechanical performance and water resistance of water-borne conducting polyaniline film, conducting polyaniline/polyurethane-silica hybrid film was prepared in aqueous solution employing silanol-terminated polyurethane and methyltriethoxysilane as sol-gel precursors. The hybrid film showed surface resistivity of 10(8) Omega even though the conducting polyaniline loading was only 10 wt% (or 1.5 wt% of polyaniline), and the mechanical performance as well as water resistance was significantly improved, making it suitable for antistatic application. Therefore, a practical route to water-borne processing of conducting polyaniline is disclosed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 10(9) Omega cm(2) until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline emeraldine base/epoxy resin (EB/ER) coating was investigated for corrosion protection of mild steel coupled with copper in 3.5% NaCl solution. EB/ER coating with 5-10 wt% EB had long-term corrosion resistance on both uncoupled steel and copper due to the passivation effect of EB on the metal surfaces. During the 150 immersion days, the impedance at 0.1 Hz for the coating increased in the first 1-40 days and subsequently remained constant above 10(9) Omega cm(2), whereas that for pure ER coating fell below 10(6) Omega cm(2) after only 30 or 40 days. Immersion tests on coated steel-copper galvanic couple showed that EB/ER coating offered 100 times more protection than ER coating against steel dissolution and coating delamination on copper, which was mainly attributed to the passive metal oxide films formed by EB blocking both the anodic and cathodic reactions. Salt spray tests showed that 100 mu m EB/ER coating protected steel-copper couple for at least 2000 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO3)(3)center dot 4(1)/2H2O. Upon firing the composite fibers at 800 degrees C, In2O3 fibers with diameters ranging from 200 to 400 nm were synthesized. This indium oxide calcined at 800 degrees C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In2O3 nanofibers were investigated. The In2O3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrostatic layer-by-layer assembly method was successfully used in a multilayer buildup of polyaniline (PANT) and platinum nanocrystals encapsulated in the carboxyl-terminated poly(amidoamine) dendrimers (generation 4.5 G4.5COOH) (Pt-G4.5COOH NPs) on solid substrates. Multilayer growth was monitored by ultraviolet-visible (UV-vis) absorption spectroscopy. The AFM observation revealed a molecularly smooth (PANI/Pt-G4.5COOH NPs) multilayer film which is rougher and thicker than the multilayer of PANT and G4.5COOH (G4.5COOH/PANI)(m). The PANI/Pt-G4.5COOH NPs multilayers show a fast surface-confined electron-exchange process at the Au electrode in an acid solution, and remains stable, reversible and electroactive, even in neutral solution. Furthermore, the multilayers show a strong elect rocatalytic response towards CO oxidation and O-2 reduction, and the catalytic capability can be easily tuned by the control of multilayer thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline/multi-walled carbon nanotube/gold (PANI/MWNT/Au) composite film was synthesized via a two-step electrochemical process. First the mixture of aniline and MWNT was heated at refluxing and was electropolymerized. Then, the An nanoparticles were dispersed into the film of PANI/MWNT by electrochemical reduction of HAuCl4. The morphology of sample was analyzed by scanning electron microscopy (SEM). Raman measurement indicates a well electrochemical deposition of PANI on MWNT, and XPS result confirms the formation of Au-0 nanoparticles. Further, cyclic voltammograms show that the film exhibits a good electrochemical activity and electrocatalysis towards ascorbic acid. Based on these investigations, a formation mechanism of the PANI/MWNT composite film was proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is developed to estimate the coverage of an electropolymerizable aniline-analogue monolayer (mixture of 2- and 3-aminophenols, 2/3-ATP) by measuring the charge capacitance of the electrode (theta = 81%). The technique of filling the uncovered area (defect sites) of the aniline-analogue monolayer with alkanethiols with long alkane chains (1-decanethiol, 1-DT) has been used to determine the coverage. The dielectric constant (permittivity) of the PANI-analogue monolayer was determined to 8.4. Adsorption kinetics of 1-DT was also studied, and the value of the rate constant of the secondary adsorption was measured to 0.9 mol(-1) dm(3) s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A triblock copolymer PLA-b-AP-b-PLA (PAP) of polylactide (PLA) and aniline pentamer (AP) with the unique properties of being both electroactive and biodegradable is synthesized by coupling an electroactive carboxyl-capped AP with two biodegradable bihydroxyl-capped PLAs via a condensation reaction. Three different molecule weight PAP copolymers are prepared. The PAP copolymers exhibit excellent electroactivity similar to the AP and polyaniline, which may stimulate cell proliferation and differentiation. The electrical conductivity of the PAP2 copolymer film (similar to 5 x 10(-6) S/cm) is in the semiconducting region. Transmission electron microscopic results suggest that there is microphase separation of the two block segments in the copolymer, which might contribute to the observed conductivity. The biodegradation and biocompatibility experiments in vitro prove the copolymer is biodegradable and biocompatible. Moreover, these new block copolymer shows good solubility in common organic solvents, leading to the system with excellent processibility. These biodegradable PAP copolymers with electroactive function thus possess the properties that would be potentially used as scaffold materials for neuronal or cardiovascular tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step method has been developed for synthesizing gold-polyaniline (Au@PANI) core-shell particles by using chlorauric acid (HAuCl4) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au@PANI particles was also proposed based on the results of control experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (aniline-co-anthranilic acid) (PANANA) nanorods in bundles was prepared successfully in an alcohol/aqueous media without assistance of an), other kinds of acids. Anthranilic acid played all roles of monomer, acid-media provider, and dopant in the reaction system, and ammonium persulfate (APS) served as the oxidant. The morphologies of PANANA nanorods in bundles were investigated by scanning electron microscopy (SEM). Influences of the monomer molar ratio on the resulting morphology were investigated. Moreover the formation mechanism of the nanostructured copolymer was proposed. FT-IR. UV-vis and X-ray diffraction (XRD) measurements were used to confirm the molecular and electrical structure of the self-doped PANANA. The intrinsic properties, such as conductivity, electrochemical redox activity and room-temperature solubility of the resulting copolymer were explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinyl alcohol) (PVA) nanofibers containing gold nanoparticles have been simply obtained by electrospinning a solution containing gold nanoparticles without the additional step of introducing other stabilizing agents. The optical property of gold nanoparticles in PVA aqueous solution was observed by UV-visible absorption spectra. Morphology of the Au/PVA nanofibers and distribution of the gold nanoparticles were characterized by transmission electron. microscopy (TEM). The structure transformation was characterized from PVA to PVA/Au composite by Fourier transform infrared spectroscopy (FTIR).