68 resultados para PLEISTOCENE
Resumo:
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.
Resumo:
The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck followed by population expansion since the late Pleistocene. Despite the low phylogeographic structures in mtDNA haplotypes, a hierarchical examination of populations in 11 localities from four geographical regions using analysis of molecular variance (AMOVA) indicated significant genetic differentiation among regions (Phi(CT) = 0.08564, p < 0.01). Limited gene flow between the eastern region (including a locality in the western Pacific Ocean and two localities in the East Sea) and three geographic regions of the South China Sea largely contributed to the genetic subdivision. However, comparisons among three geographic regions of the South China Sea showed little to no genetic difference. Populations of Lutjanus erythropterus in East Asia are inferred to be divided into two major groups: an eastern group, including populations of the western Pacific Ocean and the East Sea, and a South China Sea group, consisting of populations from northern Malaysia to South China. The results suggest that fishery management should reflect the genetic differentiation and diversity in East Asia. (c) 2006 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with C-14 datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved treesconiferous and broad-leaved mixed forest --> coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees --> coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees- coniferous and broad-leaved mixed forest-grassland prevailed by broad-leaved trees-deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees- coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees- coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.
Resumo:
The data on the isotope compositions of rubidium, strontium and oxygen in the pumice of Okinawa Trough are reported for the first time. The ages of the pumice were successfully dated with the method of U-series disequilibrium. Then, the material source, crystallization evolution of magma and activity cycles of volcanos are explored. Isotopic data show that pumice magma was originally from the mantle, but had undergone a full crystallization differentiation and had been contaminated to a fair extent by crust-derived materials before the magma was erupted out of the sea floor. According to the dating results available so far, the earliest volcanic eruption in Okinawa Trough occurred about 70,000 a ago and the latest eruption was about 10,000 a B.P. During this period, there were three volcanic eruption cycles which were respectively corresponding to the middle Late Pleistocene, the late Late Pleistocene and the Early Holocene.
Resumo:
Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.
Resumo:
On the basis of the multi-channel seismic data and the other data, using 2DMove software, the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1) the initial active center lay in the west slope and then was transferred to east and south via trough center during the evolution process; (2) several main normal faults controlled the evolution of the southern Okinawa Trough; (3) since Late Pliocene, the southern Okinawa Trough has experienced two spreading stages. The early is depression in Early-Middle Pleistocene and the late is back-are spreading in Late Pleistocene and Holocene, which is in primary oceanic crust spreading stage.
Resumo:
The complete 1140 bp mitochondial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously; different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia lablosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizofhoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5x10(4)-4.05x10(6) Years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.
Resumo:
The Ligularia-Cremanthodium-Parasenecio (L-C-P) complex of the Tussilagininae (Asteraceae: Senecioneae) contains more than 200 species that are endemic to the Qinghai-Tibetan Plateau in eastern Asia. These species are morphologically distinct; however, their relationships appear complex. A phylogenetic analysis of members of the complex and selected taxa, of the tribe Senecioneae was conducted using chloroplast (ndhF and trnL-F) and nuclear (ITS) sequences. Phylogenetic trees were constructed from individual and combined datasets of the three different sequences. All analyses suggested that Doronicum, a genus that has been included in the Tussilagininae, should be excluded from this subtribe and placed at the base of the tribe Senecioneae. In addition, the Tussilagininae should be broadly circumscribed to include the Tephroseridinae. Within the expanded Tussilagininae containing all 13 genera occurring in eastern Asia, Tussilago and NSPetasites diverged early as a separate lineage, while the remaining I I genera comprise an expanded L-C-P complex clade. We suggest that the L-C-P clade, which is largely unresolved, most likely originated as a consequence of an explosive radiation. The few monophyletic subclades identified in the L-C-P clade with robust support further suggest that some genera of Tussilagininae from eastern Asia require generic re-circumscriptions given the occurrence of subclades containing species of the same genus in different parts of the phylogentic tree due to homoplasy of important morphological characters used to delimit them. Molecular-clock analyses suggest that the explosive radiation of the L-C-P complex occurred mostly within the last 20 million years, which falls well within the period of recent major uplifts of the Qinghai-Tibetan Plateau between the early Miocene to the Pleistocene. It is proposed that significant increases in geological and ecological diversity that accompanied such uplifting, most likely promoted rapid and continuous allopatric speciation in small and isolated populations, and allowed fixation or acquisition of similar morphological characters within unrelated lineages. This phenomenon, possibly combined with interspecific diploid hybridization because of secondary sympatry during relatively stable stages between different uplifts, could be a major cause of high species diversity in the Qinghai-Tibetan Plateau and adjacent areas of eastern Asia. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background and Aims The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences.Methods Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae.Key Results The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya.Conclusions The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.
Resumo:
The Sanmen Gorge area is located in the southernmost margin of the Chinese Loess Plateau with well developed eolian deposit sequence for the past 2.6 Ma, providing a key site for further understanding of the evolution history of the East Asian monsoon since late Pliocene. This study attempted to characterize the stratigraphy and paleoclimate record of the loess-paleosol sequence in the Songjiadian section. The work involved includes systematic field investigation, paleomagnetic and rock magnetic analyses, grain size and major chemical composition analyses, and multiple proxy measurements of magnetic susceptibility, color reflectance and the ratio of CBD-dissolvable iron to the total iron (FeD/FeT). By comparisons of the Songjiadian section with well studied loess sections in the west of the Sanmen Gorge, the spatial variations of the East Asian monsoon was evaluated for some periods during which typical loess or paleosols developed. The following conclusions have been obtained. 1. Stratigraphic correlation and paleomagnetic result demonstrate that the loess-paleosol sequence in the Songjiadian section was accumulated from 2.6Ma, and is generally a complete and continuous loess sequence. However, notable differences from type loess sections have been identified for a few loess and paleosol units, featured by absence or anomalous thickness in the Songjiadian section. 2. Magnetic susceptibility and chromaticity records clearly reveal the loess-paleosol cycles, and indicate that the Sanmen Gorge area has been warmer and more humid than the Lingtai and Jingchuan sections in the western central Loess Plateau since the Early Pleistocene. 3. Grain size distribution patterns are typical of eolian dust, and show a great similarity between various units of loess and paleosols, and between the S32 and the underlying Red Clay through the Songjiadian profile, suggesting the eolian origin for the loess, paleosols and the Red Clay. 4. Comparison of the FeD/FeT curves from different loess sections indicates a stronger chemical weathering in the Songjiadian section and notable enhancement around 1800, 800 and 600 ka BP, implying the strengthening of the East Asian monsoon during these periods. In contrast, it was weakened at 1100 ka BP. Generally, the summer monsoon shows a gradually decreasing trend during the entire Pleostocene, but the spatial pattern typified by an increasing trend in weathering intensity from north to south remained the same. 5. The loess unit L9 in the Songjiadian section displays two geomagnetic field anomalies with the midpoint ages of 0.917 and 0.875 Ma respectively, with a segment of 12 ka. They are demonstrated to be equivalent to the Santa Rosa and Kamikatsura geomagnetic excursions. 6. Magnetite is the main magnetic carrier for both loess and paleosols. Maghemite concentration is higher in paleosols than in loess, and is an important carrier for the enhanced magnetic susceptibility in paleosols. Magnetic fabric analysis suggests a dominant N-S wind direction prevailing in the L9 and L15, while the summer winds were dominantly in NNE-SSW direction during the S8 period, notably differing from previous studies.
Resumo:
The Indian monsoon, an integral part of the global climate system, has been extensively investigated during the past decades. Most of the proxy records are derived from marine sediments and focused on time periods of the late Miocene and Pleistocene. The Pliocene represents a period when Earth’s boundary conditions underwent dramatic changes. However, variations of the Indian monsoon during the Pliocene and its forcing mechanisms have remained unclear. The Yuanmou Basin, located in the region of the Indian monsoon, provides an ideal target for understanding the Pliocene history of Indian monsoon variations. Detailed investigations on the lithostratigraphy, magnetostratigraphy and limnology of a 650-m-thick fluvio-lacustrine sedimentary sequence from the basin are carried out in the present study. The clay and clay-plus-fine-silt fractions of the sediments are referred to the midlake-facies components, and changes in the percentages of both fractions generally reflect changes in the water level of the lakes developed in the basin closely related to variations in the intensity of the Indian monsoon. Whereas the greenish-gray lacustrine mud beds represent the environment of deep-water lakes, and the frequency of individual lacustrine mud beds is considered to indicate the frequency of the deep-water lakes developed in the basin associated with the variability of the Indian monsoon. The proxy data suggest that the Indian monsoon experienced abrupt shifts at 3.53, 3.14, 2.78 and 2.42 Ma, respectivey. 1) Since 3.53 Ma, the midlake-facies components displayed a general trend of increase in the concentrations, accompanied by an increase in the sedimentation rate from an average ~10 to 25 cm ka–1. The data suggest that high stands of the lakes in the basin rose progressively, implying a gradual intensification of the Indian monsoon since that time. This shift occurred coeval with the accelerated uplift of the northern Tibetan Plateau, denoting a close link between the Indian monsoon strengthening and the Tibetan Plateau uplifting. 2) 2.78 Ma ago, the concentrations of the midlake-facies components decreased abruptly and the dominant fraction of the sediments turned to fluvial sands. The data indicate that lakes in the basin disappeared, reflecting a dramatic decline in the intensity of the Indian monsoon at that time. This shift coincided with the formation of extensive Northern Hemisphere ice sheets, implying a quick response of the low-latitude monsoon regime to the high-latitude glaciation. 3) At 3.14 Ma, the initial appearance of blackish-grey mud beds with long durations and occasional occurrences of lacustrine mud beds indicate that the basin was overall dominated by shallow lakes, implying a shift to decreased variability of the Indian monsoon at that time. At 2.42 Ma, an increase in the frequency and a decrease in the duration of the lacustrine mud beds suggest that deep-water lakes were frequently developed in the basin, denoting a shift to increased variability of the Indian monsoon at that time. The former shift coincides with the onset of large-scale glaciation in the circum Atlantic region and the latter corresponds to the inception of predominance of the 41 ka periodicity in Northern Hemisphere ice-sheet cover fluctuations, presumably suggesting a physical link between the Indian monsoon system and the high-latitude ice sheets in the Northern Hemisphere.
Resumo:
Late Cenozoic has witnessed a series of climate-environmental change which ends with a transitional shift from greenhouse to icehouse conditions. In last two decades, scientists began to employ the tectonic uplift and its weathering effect to interpret the climatic changes during the late Cenozoic. However, this endeavor has partly been restricted by the lacking of regional and global chemical weathering data. The loess-red clay deposit in the Loess Plateau may record the weathering features of the detritus material from the wide range upwind of the Loess Plateau. Therefore geochemistry of the loess-plaeosol and red clay sequences may provide insights into the regional chemical weathering regime and the connection between the chemical weathering and the late Cenozoic climate-environmental change Here we selected 319 samples from the Baishui section near the Pingliang City, Gansu Province, and analyzed them with X-ray fluorescence. Based on the result, we reconstruct the chemical weathering history of the Baishui section since 6Ma. We chose CIA as the proxy for chemical weathering intensity. The CIA ratio in soil units is higher than in adjacent loess horizons, but lower than in the red clay, in good agreement with the field observation. The CIA ratios of the Baishui section correlates well with the global ice volume fluctuations, indicating that the global cooling may contribute a lot to the chemical weathering variations in Chinese Loess Plateau. There are at least 3 million-year time scale variations that can be identified in the chemical weathering intensity curve, i.e., between 3.3 to 2.1 Ma, 1.7 to 0.9 Ma and from 0.9Ma. We think these may reflect the combined effect of the tectonic uplift and ice sheets on monsoon intensity. Other time scale variations can be also observed. In the period between 2.4 and 0.8 Ma, the CIA record display the 400,000 years cycle, which may be resulted from the Tibetan uplift during the Pliocene-early Pleistocene which have significantly amplified the monsoon response sensitivity to the orbital-scale variations in insolation. From 1.2 Ma, the 100,000 years period became intensifying, and particularly after 0.8 Ma, the earlier monsoon response at 400,000 year periodicity was overwhelmed by the ice sheet forcing at 100,000 year periodicity. These may indicate that the expansions of the Northern Hemisphere ice sheets may have crossed a threshold, which enforce the monsoon responding at the 100,000 year periodicity.
Resumo:
It is known that global climate changed from the early Tertiary “Green House” to the Quaternary “Ice House” of cyclic glacial-interglacial climatic changes. Since the middle Pleistocene, the climate cycles changed from 40 kyr to 100 kyr, and the amplitudes of climatic fluctuations increased significantly. Therefore, it is important to study the climate changes since the middle Pleistocene. The loess-paleosol sequence in China is considered as one of the most continuous continental records of the last 2.58 Ma. Paleoclimatic and environmental changes have been widely extracted through various climatic parameters. However, the history of paleovegetation on the Loess Plateau still remains unclear. Did an extensive broadleaf forest ever exist on the Loess Plateau? Pollen preserved in the loess and paleosol provides a direct record for vegetation and paleoenvironmental change on the Plateau. However, because it is difficult to extract sufficient pollen grains from loess, the pollen record since the middle Pleistocene especially in the central part of the Chinese Loess Plateau has not been well studied. So we preliminarily focus on the palynological records of the loess-paleosol sequence spanning the last 630 kyr at Luochuan and aim to understand the evolution of vegetation and climate change on the Chinese Loess Plateau. The main results and conclusions are as follows: 1. The palynological results show that the grassland has been a dominant vegetation in the Luochuan area since 630 kyr, even during the intervals of relatively warm and wet climatic conditions. 2. The pollen concentration of Luochuan section sharply decreases from the bottom of S1 to downward depth. This decrease can be attributed to depositional environment rather than climate change. In loess, not only oxidation, but also the PH of deposits and bacteria or fungi have been able to degrade sporopollenin. 3. The paleoclimatic condition during S4 stage, characterized with warmer condition during the early stage, was warmer and wetter than that during S5 in Luochuan area. Paleoclimate was warmer and wetter during the early stage of S5 and became colder and drier later. The special pedogenic features of S5-I can be attributed to a prolonged pedogenic duration rather than a warm-wet climate. 4. Evidence from pollen assemblage suggests that the Holocene vegetation has been affected by human impacts, especially after the Yangshao Culture. 5. The present steppe environment on the loess plateau is mainly due to natural conditions. Temperature, seasonal precipitation and soil structure are three important factors which control the vegetation type. 6. The vegetation on the loess plateau is characterized with zonal or azonal distribution. So local conditions should be taken into account when recover natural vegetation. Finally, the restoration and reconstruction of ecosystem on the loess plateau area should be focused on planting grassland rather than forests.
Resumo:
Linxia Basin, situated in the northeast belt of the Tibetan Plateau, is a late Cenozoic depression basin bounded by the Tibetan Plateau and the Chinese Loess Plateau. The Cenozoic deposition, spanning over 30Ma, in which very abundant mammal fossils were discovered, is very suitable for study of uplift processes and geo-morphological evolution of the Tibetan Plateau. The Longdan section (35°31′31.6″N,103°29′0.6″E) is famous for the middle Miocene Platybelodon fauna and the late Miocene Hipparion fauna for a long time and is also one of the earliest known places for wooly rhino, which lies on the east slope of Longdan, a small village of township Nalesi in the south of the Dongxiang Autonomous County, Linxia Hui Nationallity Autonomous Prefecture. The Longdan mammal fauna was discovered at the base of the Early Pleistocene loess deposits at Dongxiang, where the lithology is different from the typical Wucheng Loess on the Chinese Loess Plateau. The rich fossils contain many new species and the major two layers of fossils are in the loess beds. Geologically the fossiliferous area is located in the central part of the Linxia Cenozoic sedimentary basin. Tectonically the Linxia Basin is an intermountain fault basin, bordered by the Leijishan major fault in the south and the north Qinling and Qilianshan major faults in the north. The section is 51.6m thick above the gravel layer, including the 1.6m Late Pleistocene Malan Loess on the top and the other loess-paleosol sequences in the middle of the section. The base of the section is the Jishi Formation, consisting of gravel layer of 13 ~ 17m thick. In this study, 972 bulk samples were collected with an interval of 5cm and other 401 orientied samples were taken with a magnetic compass. In the laboratory, the paleomagnetism, medium grain size, susceptibility, color, micromorphology, anisotropy of magnetic susceptibility were analyzed. From the stratigraphic analysis, the Longdan section from the top 0.3m to the bottom 51.6m, containing 5 normal polarities (N1-N5) and 5 reversal polarities (R1-R5). The paleomagnetic results show N3 is the Olduvai subchron in the middle of the Matuyama chron, and then the chronology of the Longdan mammal fauna is constructed along the section. The Matuyama-Gauss boundary is 45m and N5 enters Gauss chron. The Olduvai subchron with the age of 1.77 ~ 1.95Ma is found just in the upper fossiliferous level of Longdan mammal fauna. Taking the deposit rate of the section into account, the geological age of the upper fossiliferous level of Longdan mammal fauna is estimated to be about 1.9Ma. The lower fossiliferous level is just below the Reunion subchron and its age is estimated to be 2.25Ma. In addition, anisotropy of magnetic susceptibility of the loess-paleosol and other climatic indexes were used for discussing the late Cenozoic paleoenvironmental changes at Longdan, from which the Longdan area should have been an area of predominantly steppe the same as the Longdan mammal fauna.
Resumo:
A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.