144 resultados para PC-algorithm
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
A novel geometric algorithm for blind image restoration is proposed in this paper, based on High-Dimensional Space Geometrical Informatics (HDSGI) theory. In this algorithm every image is considered as a point, and the location relationship of the points in high-dimensional space, i.e. the intrinsic relationship of images is analyzed. Then geometric technique of "blurring-blurring-deblurring" is adopted to get the deblurring images. Comparing with other existing algorithms like Wiener filter, super resolution image restoration etc., the experimental results show that the proposed algorithm could not only obtain better details of images but also reduces the computational complexity with less computing time. The novel algorithm probably shows a new direction for blind image restoration with promising perspective of applications.
Resumo:
Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.
Resumo:
One of the most important kinds of queries in Spatial Network Databases (SNDB) to support location-based services (LBS) is the shortest path query. Given an object in a network, e.g. a location of a car on a road network, and a set of objects of interests, e.g. hotels,gas station, and car, the shortest path query returns the shortest path from the query object to interested objects. The studies of shortest path query have two kinds of ways, online processing and preprocessing. The studies of preprocessing suppose that the interest objects are static. This paper proposes a shortest path algorithm with a set of index structures to support the situation of moving objects. This algorithm can transform a dynamic problem to a static problem. In this paper we focus on road networks. However, our algorithms do not use any domain specific information, and therefore can be applied to any network. This algorithm’s complexity is O(klog2 i), and traditional Dijkstra’s complexity is O((i + k)2).
Resumo:
中国计算机学会
Resumo:
Emporiki Bank; Microsoft; Alpha Bank