58 resultados para Oxygen transfer coefficient


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass micropipettes with silanized inner walls can be filled with an organic solvent for voltammetric measurements in an aqueous solution. This arrangement was employed to investigate systematically the mechanism of facilitated potassium ion transfer by an ionophore dibenzo-18-crown-6 (DB18C6) across a micro-water/1.2-dichloroethane(W/DCE) interface supported at the tip of a silanized micropipette. Our experimental results verify that this facilitated ion transfer across the liquid/liquid interface did occur by an interfacial complexation-dissociation process (TIC-TID mechanism). The ratio of the diffusion coefficient of DB18C6 to that of its complexed ion in the DCE phase was calculated to be 1.74 +/- 0.07.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Bridgeman-Stockbarger method, the KMgF3:EU2+ single crystal was grown. The color centers in unirradiated KMgF3:Eu crystal were studied. By thermal annealing, we confirmed the 422-nm emission resulted from color centers and oxygen centers, and we proved the energy transfer from EU2+ to color centers. From spectra, the relative oxygen content in crystal was calculated, and the relationships of oxygen displacing fluorine were studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A functionalized fullerene derivative containing a monoaza-18-crown-6 moiety was investigated by facilitated ion (such as Li+, Na+, K+, NH4+, Mg2+, and Ca2+) transfer across the micro-water/nitrobenzene interface supported at the tip of a micropipet. The current responses were detected by cyclic voltammetry and Osteryoung square wave voltammetry, which demonstrated that the facilitated ion transfer does occur by an interfacial complexation-dissociation process. The diffusion coefficient of this compound in nitrobenzene was approximately (5.90 +/- 0.04) x 10(-7) cm(2) s(-1), which is 1 order of magnitude less than other common ionophores due to the large size of the molecule. The selectivity of this molecule toward the metal ions followed the sequence Na+ > Li+ > K+ > NH4+ > Ca2+ similar to Mg2+. In addition, this compound was also easy to form film at the water/nitrobenzene interface to inhibit the simple ion transfer of tetramethylammonium ion. However, the adsorption of this ionophore has less influence on the facilitated metal ion transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium ion transfer across micro-water/1,2-dichloroethane (DCE) interface facilitated by a novel ionophore, terminal-vinyl liquid crystal crown ether (LCCE) was studied by cyclic voltammetry. LCCEs have potential applications because of their physicochemical properties and the utilization of crown ethers as selective ionophoric units in other functionalized compounds are interesting. Host-guest-type behavior for such compounds in the liquid-crystalline state is studied. The experimental results suggest that the transfer of the sodium ion facilitated by LCCE was controlled by diffusion of LCCE from bulk solution of DCE to the interface. The diffusion coefficient of LCCE in DCE was calculated to be equal to (3.62 +/- 0.20) x 10(-6) cm(2)/s. Steady-state voltammograms are due to sodium ion transfer facilitated by the formation of 1: 1 metal (M)-LCCE complex at the interface and the mechanism tends to be transfer by interfacial complexation or dissociation (TIC or TID). The stability constant of the complex formed was determined to be log beta(o) = 5.5 in DCE phase. The influence of parameters such as concentration of sodium ion and concentration of LCCE on the sodium ion transfer was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sodium ion transfer across the micro-water/1,2-dichloroethane interface facilitated by a novel ionophore, liquid crystal crown ether was studied systematically. The sodium ion transfer facilitated by LCCE is controlled by diffusion studied by cyclic voltammetry. The diffusion coefficient of LCCE in 1,2-dichloroethane was calculated to be equal to (2.61 +/- 0.12) X 10(-6) cm(2)/s and the stability constant of the complex between Na+ and LCCE was determined as lg beta (o) = 5.7 in 1,2-dichloroethane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct, quasi-reversible electrochemical reaction of horse heart hemoglobin without further purification was obtained for the first time at the indium oxide electrode when oxygen was removed from the solution and hemoglobin molecules. It was found that removing oxygen from the solution and hemoglobin molecules is an important factor for obtaining the quasi-reversible electrochemical reaction of hemoglobin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical impedance spectroscopy (EIS) at different potentials has been used to study the oxygen reduction reaction (ORR) in 3.5% NaCl solution on glassy carbon (GC) electrode in this work. Results show that ORR consists of three two-electron reaction steps and both superoxide ion (O-2(-)) and hydrogen peroxide (H2O2), which are produced by ORR, obstruct the diffusion of oxygen to the surface of the electrode and make the EIS results change into a transmissive finite diffusion process with the real part contraction and a reflective finite diffusion process from a semi-infinite diffusion process. The values of electron transfer resistance (R-t) and diffusion resistance (R-d) were calculated from EIS. O-2(-) influenced strongly on the Rt values and induced a maximum at -0.45 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive homogenous time-resolved fluoroimmunoassay (TR-FIA) method for bensulfuron-methyl (BSM) based on fluorescence resonance energy transfer (FRET) from a Tb3+ fluorescent chelate with N,N,N',N'-[2,6-bis(3'-aminomethyl-1'-pyrazoly)-4-phenylpyridine] tetrakis(acetic acid) (BPTA-Tb3+) to organic dye, Cy3 or Cy3.5 has been developed. New method combined the use of BPTA-Tb3+ labeled streptavidin, Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody and biotinylated BSM-BSA conjugate (BSA is bovine serum albumin) for competitive-type immunoassay. After BPTA-Tb3+ labeled streptavidin was reacted with a competitive immune reaction solution containing biotinylated BSM-BSA, BSM sample and Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody, the sensitized and long-lived emission of Cy3 or Cy3.5 derived from FRET was measured, and thus the concentration of BSM in sample was calculated. The present method has the advantages of rapidity, simplicity and high sensitivity since the B/F (bound reagent/free reagent) separation steps and the solid-phase carrier are not necessary. The method gives the detection limit of 2.10 ng ml(-1). The coefficient variations of the method are less than 1.5% and the recoveries are in the range of 95-105% for BSM water sample measurement. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical analysis of fully developed laminar slip flow and heat transfer in trapezoidal micro-channels has been studied with uniform wall heat flux boundary conditions. Through coordinate transformation, the governing equations are transformed from physical plane to computational domain, and the resulting equations are solved by a finite-difference scheme. The influences of velocity slip and temperature jump on friction coefficient and Nusselt number are investigated in detail. The calculation also shows that the aspect ratio and base angle have significant effect on flow and heat transfer in trapezoidal micro-channel. (c) 2005 Elsevier Ltd. All rights reserved.