50 resultados para Oscillating.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H + CH4-->H-2 + CH3 using time-dependent wave-packet method. The reaction probabilities for producing H-2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abstraction is favored due to tunnelling effect. In partially deuterated CHxDy (x + y = 4), the breaking of the C-H bond is favored over that of the C-D bond in the entire energy range studied. In H + CHD3 reaction at high energies, the HD product dominates simply due to statistical factor. (C) 2003 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two gravity piston cores (Cores 155 and 18) involved in this study were collected from the middle Okinawa Trough. Stratigraphy of the two cores was divided and classified based on the features of planktonic foraminifera oxygen isotope changes together with depositional sequence, millennium-scale climatic event comparison, carbonate cycles and AMS(14)C dating. Some paleoclimatic information contained in sediments of these cores was extracted to discuss the paleoclimatic change rules and the short-time scale events presented in interglacial period. Analysis on the variation of oxygen isotope values in stage two shows that the middle part of the Okinawa Trough may have been affected by fresh water from the Yellow River and the Yangtze River during the Last Glacial Maximum (LGM). The oxygen isotope value oscillating ranges of the cores have verified that the marginal sea has an amplifying effect on climate changes. The delta(13)C of benthic foraminifera Uvigerina was lighter in the glacial period than that in the interglacial period, which indicates that the Paleo-Kuroshio's main stream moved eastward and its influence area decreased. According to the temperature difference during the "YD" period existing in Core 180 and other data, we can reach the conclusion that the climatic changes in the middle Okinawa Trough area were controlled by global climatic changes, but some regional factors had also considerable influence on the climate changes. Some results in this paper support Fairbanks's point that the "YD" event was a brief stagnation of sea level rising during the global warming up procession. Moreover, the falling of sea level in the glacial period weakened the exchange between the bottom water of the Okinawa Trough and the deep water of the northwestern Pacific Ocean and resulted in low oxygen state of bottom water in this area. These procedures are the reasons for carbonate cycle in the Okinawa Trough area being consistent with the "Atlantic type" carbonate cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In considering the vertical heat transport problems in the upper ocean, the flat upper boundary approximation for the free surface and the horizontal homogenous hypothesis are usually applied. However, due to the existence of the wave motion, the application of this approximation may result in some errors to the solar irradiation since it decays quickly in respect to the actual thickness of the water layer below the surface; on the other hand, due to the fluctuation of the water layer depth, it is improper to neglect the effects of the horizontal advection and turbulent diffusion since they also contribute to the vertical heat transport. A new model is constructed in this study to reflect these effects. The corresponding numerical simulations show that the wave motion may remarkably accelerate the vertical heat transferring process and the variation of the temperature in the wave affected layer appears in an oscillating manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai-Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai-Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai-Tibetan Plateau.Methods The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained.Key Results Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa showed a tentative position within the clade comprising five species of Sect. Rheum. All of the analyses revealed the paraphyly of R. nobile and R. alexandrae, the only two species of Sect. Nobilia circumscribed by the possession of large bracts. The crude calibration of lineages based on trnL-F sequence differentiation implied an extensive diversification of Rheum within approx. 7 million years.Conclusions Based on these results, it is suggested that the rich geological and ecological diversity caused by the recent large-scale uplifts of the Qinghai-Tibetan Plateau since the late Tertiary, coupled with the oscillating climate of the Quaternary stage, might have promoted rapid speciation in small and isolated populations, as well as allowing the fixation of unique or rare morphological characters in Rheum. Such a rapid radiation, combined with introgressive hybridization and reticulate evolution, may have caused the transfer of cpDNA haplotypes between morphologically dissimilar species, and might account for the inconsistency between morphological classification and molecular phylogeny reported here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on seawater carbon isotope in the Mesoproterozoic and Neoproterozoic is abundant. However, the sulfur isotopic age curve of seawater sulfates determined through the analysis of sulfur isotopic composition of marine evaporite is uncertain in the Mesoproterozoic and Neoproterozoic since evaporites are generally rare in Precambrian. The Mesoproterozoic and Neoproterozoic Carbonate Formations preserve not only the carbon isotopic records, but also the sulfur isotopic records of coeval seawater in the Huabei Platform and the Yangtze Platform, China. Sulfur isotopic composition can be determined by the extraction of trace sulfate from carbonate samples. Successive measurements of sulfur and carbon isotopic compositions of carbonate samples from the Mesoproterozoic and Neoproterozoic strata in the Huabei Platform and the Yangtze Platform was accomplished through the extracting of trace sulfate from carbonates. Sulfur and carbon isotopic compositions of coeval seawater were obtained from analytical results of sulfur and carbon isotopes of the same sample without diagenetic alteration. The high-resolution age curve of sulfur isotope given in this paper may reflect the trend of variations in sulfur isotope composition of seawater sulfates during the Mesoproterozoic and Neoproterozoic. It can be correlated with the characteristics of variation in age curve of carbon isotope of coeval seawater carbonates. The δ34S values of seawater varied from +10.3-37.0‰ during the Mesoproterozoic, which took on oscillated variation on the whole. The δ34S values took on high values in the Mesoproterozoic Chuanlinggou stage, Tuanshanzi stage Tieling stage and in Neoproterozoic Jing'eryu stage. The average of those was about +30‰. The sulfates have low δ34S values in the Mesoproterozoic Yangzhuang stage and Hongshuizhuang stage, The average of those was all lower than +20‰. There occured large-amplitude changs in δ34S values of seawater during the Mesoproterozoic. Large-amplitude oscillate of 534S values occured in the intervals of 1600~1400Ma and 1300~1200Ma. The δ13C values of seawater are mostly negative in Changcheng stage of late Paleoproterozoic, -0 ± 1‰ range in Jixian stage of Mesoproterozoic , and the positive 2±2‰ commonly in early Neoproterozoic Jing'eryu stage. From 1000 Ma to 900 Ma, about 108 years interval of oceanic 513C record is shortage. At the end of Paleoproterozoic (1700 - 1600 Ma), the oceanic 813C values change from -3‰ to 0‰, but strongly oscillate near 1600 Ma. Two larger variations of seawater 513C values occur in the Mesoproterozoic: one is a cycle of about 4%o happens at ca. 1400 Ma; another is rise from >2‰ to>5‰ at ca. 1250 Ma and then become stable at the near 1000 Ma. There appears a large positive excursion over +20‰ in 534S value of ancient seawater sulfates in the early Doushantuo stage. Simultaneously, 8 C values of ancient seawater occur a positive excursion reaching 10‰. These allow δ4S values and 513C values to reach high values of+51.7‰ and +6.9‰, respectively. The range of variation in 834S values of seawater is relatively narrow and 513C values are quite high in the middle Doushantuo stage. Then, δ34S values of seawater become oscillating, the same happens in δ13C values. Negative excursions in 834S values and 813C values occur simultaneously at the end of the Doushantuo stage, and the minimum of δ34S values and δ13C values dropped to -11.3‰ and -5.7‰, respectively. The ancient seawater in the Dengying stage has high δS values and δ13C values. Most of the δ34S values of the trace sulfate samples varied between +23.6‰ and +37.9‰ except two boundaries of the Dengying Formation, and the S13C values of the carbonate samples of the Dengying Formation varied between +0.5‰ and +5.0‰. There appeared large negative excursion in 834S values and δ13C values of ancient seawater at the bounder of Precambrian-Cambrian. The isotopic characteristics of sulfur and carbon implicated that the organic productivity and isotopic fractionation caused by biology were low and the palaeoceanic environment was quite unstable during the Mesoproterozoic. The increase and subsequent oscillation of seawater δ13C value occurred from 1700 to 1600 Ma and near 1300 Ma may be responsible to the two global tectonic events happened at coeval time. The characteristics of variation in sulfur and carbon isotopes of ancient seawater imply strong changes in oceanic environment, which became beneficial to inhabitation and propagation of organism. The organic production and the burial rate of organic carbon once reached a quite high level during the Doushantuo stage. However, the state of environment became unstable that means the global climate and the environment possibly were fluctuating and reiterating after the global glaciation. The negative excursions of S34S values and δ13C values occurring at the end of the Doushantuo stage represent a global event, which might be relative to the oxidation of deep seawater. The isotopic characteristics of sulfur and carbon implicated that there were a high organic productivity and a high burial rate of organic carbon in the Dengying stage. It is obvious that the palaeoceanic environment in Dengying stage was stable corresponding and beneficial for biology to inhabit and propagate except for the two boundaries. The tendency of sulfur and carbon isotopic variations maybe resulted from the gradual oxygenation of ocean environment during the Dengying stage. It has been reported that the secular variations of the sulfur isotopic compositions in seawater was negative correlated with that of carbon isotopic compositions. However, our results show that it is not the case. They were negatively correlated in some intervals and positively in some other intervals of the Mesoproterozoic and Neoproterozoic. The difference in correlation may be associated with the changes in conditions of redox in oceanic environment, e.g. sharp change of the oxidation-reduction interface. The strong changes in global environment may induce the abnormality to occur in the biogeo chemical S and C cycles in the ocean and accordingly sharp Variations in isotopic composition of seawater sulfur and carbon during the Mesoproterozoic and Neoproterozoic. Simultaneously, the global tectonism caused large changes of 87Sr/86Sr ratios. The leading factor that causes the variation in isotopic composition is different in the different intervals of the Mesoproterozoic and Neoproterozoic. Thus, there may exist different models of the biogeochemical S and C cycles in the ocean during the Mesoproterozoic and Neoproterozoic.