50 resultados para ORTHO-PYROXENE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transition from brittle fracture to ductile creep of the Gaojiabian diabase is investigated as a function of temperature and water content. Experiments are conducted at 500 MPa confining pressure, with strain rate being 1 * 10~(-4) and temperature from 300 ℃ to 800 ℃. The transition from semibrittle to ductile flow of dry diabase occurs at temperatures between 700 ℃ and 750 ℃, while the transition of wet diabase takes place at about 500 ℃. The transition temperature in the wet diabase is about 200 ℃ lower than in the dry diabase. The strength of both dry and wet samples is temperature insensitive in brittle-semibrittle regime and temperature sensitive in ductile regime. At the same conditions, water within the sample could weaken the strength of wet samples. The microstructures of dry and wet samples are different. In experimental conditions, feldspars show two different deformation mechanisms, the first acting in brittle and semibrittle regime and the second acting in plastic regime, and water must have greatly affected the two mechanisms. Strength of pyroxene is lower than that of feldspar at low temperature. Pyroxene can be transformed to hornblende in deformation process and this transformation is quite temperature and water dependent. Feldspar plays a key role in the deformation in its first mechanism regime, and no dominant minerals are identified in the second mechanism regime of feldspar. The result of FTIR analysis show that water exists in wet sample in the form of -OH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fanshan complex consists of layered potassic ultramafic-syenite intrusions. The Fanshan apatite (-magnetite) deposit occurs in the Fanshan complex, and is an important style of phosphorus deposit in China. The Fanshan complex consists of three (First- to Third-) Phases of intrusion, and then the dikes. The First-Phase Intrusive contains ten typical layered rocks: clinopyroxenite, biotite clinopyroxenite, coarse-grained biotite clinopyroxenite, pegmatitic orthoclase-biotite clinopyroxenite, variegated orthoclase clinopyroxenite, interstitial orthoclase clinopyroxenite, biotite rock, biotite-apatite rock, biotite rock and magnetite-apatite rock. This layered intrusive consists of nine rhythmic units. Each rhythmic unit essentially comprises a pair of layers: clinopyroxenite at the bottom and biotite clinopyroxenite at the top. The apatite (-magnetite) deposit is situated near the top of rhythmic Unit no. 6 of the First-Phase Intrusive. The Second-Phase Intrusive contains three typical rocks: coarse-grained orthoclase clinopyroxenite, . coarse-grained salite syenite and schorlomite-salite syenite. The Third-Phase Intrusive includes pseudo-trachytic salite syenite, porphyritic augite syenite, fine-grained orthoclase clinopyroxenite and fine-grained salite syenite. The origin of the Fanshan complex is always paid attention to it in China. Because most layered igneous intrusion in the world not only have important deposit in it, but also carry many useful information for studying the formation of the intrusion and the evolvement of magma. Two sketch maps were drawn through orebodies along no. 25 cross-cut on 425 mL and no. 1 cross-cut on 491 mL in the Fanshan mine. Through this mapping, a small-scaled rhythmic layering (called sub-rhythmic layering in the present study) was newly found at the top of the rhythmic Unit no. 6. The concept of sub-rhythmic layering is defined in this article. The sub-rhythmic layering is recognized throughout this apatite-rich part, except for magnetite-apatite rock. Presence of the layered magnetite-apatite rock is one of the characteristics of the Fanshan apatite (-magnetite) deposit. Thus, from this layer downwards six units of sub-rhythmic layering are recognized in the present study. Each unit consists of biotite clinopyroxenite (or biotite rock and biotite-apatite rock) layer at the bottom and apatite rock layer at the top. To study this feature in detail is an important work for understanding the origin of the Fanshan complex and apatite (-magnetite) deposit. The origin of the Fanshan complex and the relation of the formation of the apatite(-magnetite)deposit will be interpreted by the study of sub-rhythmic layering on the basis of previous research works. The magma formed the Fanshan complex was rich in K2O, early crystallized pyroxene, and after this phase more biotite crystallized, but no amphibole appeared. This indicated that the activity of H2O in the magma was low. Major element compositions of biotite and clinopyroxene (on thin sections) in the sub-rhythmic layering were analyzed using electron microprobe analyzer. The analytical results indicate Mg/(Mg+Fe*+Mn) atomic ratios (Fe*, total iron) of these two minerals rhythmically changed in sub-rhythmic layering. The trends of Mg/(Mg+Fe*+Mn) atomic ratio (Fe*, total iron) of biotite and clinopyroxene indicate that the magma evolved markedly from relatively magnesian bottom layer to less magnesian top layer in each sub-rhythmic unit. A general trend through the sub-rhythmic layering sequence is both minerals becoming relatively magnesian upwards. The formation temperatures for sub-rhythmic layering yield values between 600 and 800 ℃, were calculated using the ratio of Mg/(Mg+Fe+Mn) in the salite and biotite assemblage. The equilibrium pressures in the rhythmic layers calculated using the contents of Al in the salite were plotted in the section map, shown a concave curve. This indicates that the magma formed the First-Phase Intrusive crystallized by two vis-a-vis ways, from its bottom and top to its centre, and the magnetite-apatite rock was crytallized in the latest stage. The values of equilibrium pressures in the sub-rhythmic layering were 3.6-6.8(xlO8) Pa with calculated using the contents of Al in the salite. The characteristics of geochemistry in various intrusive rocks and the rocks or apatite of sub-rhythmic layers indicated that the Fanshan complex formed by the comagmatic crystallization. The contents of immiscible elements and REEs of apatite rock at the top of one sub-rhythmic unit are more than biotite clinopyroxenite at the bottom. The contents of immiscible elements and REEs of apatite of biotite clinopyroxenite at the bottom of one sub-rhythmic unit are higher than apatite rock at the top. The curves of rocks (or apatite) in the upper sub-rhythmic units are between two curves of the below sub-rhythmic unit in the primitive mantle-normalized trace element abundance spider diagram and the primitive mantle-normalized REE pattern. The trend for the contents of immiscible elements and REEs inclines to the same contents from the bottom to the top in sub-rhythmic layering. These characteristics of geochemistry of rocks or apatites from sub-rhythmic layering indicate that the latter sub-rhythmic unit was produced by the residual magma after crystallization of the previous sub-rhythmic unit. The characteristics of petrology, petrochemistry, geochemistry in the Fanshan complex and sub-rhythmic layers and the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering rejected the hypotheses, such as magma immiscibility, ravitational settling and multiple and pulse supplement of magma. The hypothesis of differentiation by crystallization lacks of evidences of field and excludes by this study. On the base of the trends of formation temperatures and pressures, the characteristics of petrology, petrochemistry, geochemistry for the Fanshan complex and the characteristics of geochemistry for the rocks (or apatites), the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering, and the data of oxygen, hydrogen, strontium and neodymium isotopes, this study suggests that the magma formed the Fanshan complex was formed by low degree partial melting of mantle at a low activity of H2O, and went through the differentiation at the depth of mantle, then multiply intruded and crystallized. The rhythmic layers of the First-Phase Intrusive formed by the magma fractional crystallized in two vis-a-vis ways, from the bottom and top to the centre in-situ fractional crystallization. The apatite (-magnetite) deposit of the Fanshan complex occurs in sub-rhythmic layering sequence. The the origin of the sub-rhythmic layering is substantially the origin of the Fanshan apatite (-magnetite) deposit. The magma formed the rhythmic layers of First-Phase Intrusive was rich in H2O, F and P at the later stage of its in-situ fractional crystallization. The Fanshan apatite (-magnetite) deposit was formed by this residual magma in-situ fractional crystallization. The magnetite-apatite rock was crystallized by two vis-a-vis ways at the latest stage in-situ fractional crystallization in the rhythmic layers. The result was light apatite layer below heavy the magnetite-apatite layer, formed an "inversion" phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

磷是水生生态系统初级生产力的主要限制因子,也是造成湖泊富营养化的关键营养元素。湖泊富营养化现已成为世界性的环境问题,它不但制约了湖泊资源的可利用性,而且直接影响着人类的健康生存与社会经济的可持续发展。沉积物内源磷的释放是决定湖泊水体营养水平、影响湖泊富营养化治理成效的重要因素。因此,研究沉积物中磷的组成形态、含量分布及迁移转化等对于全面了解湖泊生态系统中磷的生物地球化学循环,有效控制和管理湖泊富营养化具有重要的意义。然而目前对沉积物中的无机磷(Pi)及其生物可利用性进行了大量的研究,有机磷(Po)作为沉积物中的重要化学成分,它的地球化学特征及其对湖泊富营养化的作用却了解甚少。 长江中下游地区和云贵高原地区是我国淡水湖泊的主要分布区,也是我国湖泊富营养化最为严重的地区。本论文工作选取两地区具不同流域特征、水文状况、生态结构、污染程度的代表性湖泊(太湖梅梁湾、鼋头渚、贡湖、东太湖, 红枫湖, 百花湖和洱海)为研究对象,结合传统的化学连续提取手段和最新的液体磷核磁共振(31P NMR)波谱分析,研究了这些湖泊沉积物中Po的形态、组成以及剖面分布特征,揭示了Po对湖泊富营养化的重要作用;并运用高效体积排阻色谱法、分子荧光光谱法探讨了它们与沉积物中有机质的关系。主要研究结果如下: 1. 采用改进的土壤Po分级体系研究湖泊沉积物中Po的赋存形态,沉积物中Po的回收率可达94.3-101.1%,平均为98.5±2.2%,说明了该方法基本上包括了沉积物中全部Po。这是因为本方法对活性Po和腐殖质磷萃取的时间更长,提取更为完全;对富里酸磷和胡敏酸磷的区分更加明确;还特别增加了残渣态有机磷(Residual Po)的测定,使得Po的形态分析更为周密和准确。沉积物中Residual Po的含量占总Po的29.9-57.2%,进一步表明了此方法的可取性,这将为以后开展湖泊沉积物中Po的形态研究奠定了基础。 2. 湖泊沉积物中磷形态的不同分布特征可能与两地区不同的湖泊类型、有机质降解过程的差异以及各种磷形态之间的相互转化有关。Po形态在不同污染程度沉积物中的含量与分布也充分说明了沉积物是水体富营养化的主要内源,Po对湖泊富养化的作用不容忽视。 3.太湖梅梁湾、鼋头渚和贡湖沉积物不同提取液中有机质的分子量分布特征可能表明了其中有机质和Po组成的差异,而沉积物中有机C/N和C/P比值分析和三维荧光光谱特征的相似形可能反映了太湖(浅水湖泊)沉积物中有机质与磷的地球化学特性及其相互关系。 4. 31P NMR的测定结果显示,湖泊沉积物中磷主要由正磷酸盐(Ortho-P)、磷酸单酯(Monoester-P)与二酯(Diester-P)组成,焦磷酸盐(Pyro-P)和膦酸盐(Phosphonate)的含量非常低。Ortho-P在重富营养化和浅水湖泊沉积物中的相对含量高于富营养化、中富营养化和深水湖泊沉积物,Monoester-P的分布特征正好相反,表明了这些磷化合物在不同湖泊生态系统磷的循环中的差异。此外,Monoester-P中肌糖磷酸的大量存在,也同时证实了前面Po化学连续提取中高含量的Residual Po。 5. 梅梁湾和洱海沉积物中总磷(TP)、Pi、Ortho-P、Monoester-P、总有机碳(TOC)和总氮(TN)表现出不同的剖面分布特征,说明了有机质和磷在不同湖泊环境中的分解转化规律,可能解释了内源磷的释放对两湖富营养化的影响。此外,Diester-P中DNA-P的剖面变化和前人报道的沉积物中DNA的分布特征正好吻合,表明了DNA-P主要来源于沉积物中细菌和微生物的DNA。