84 resultados para ORIENTED ATTACHMENT
Resumo:
Isothermal crystallization kinetics in the melting of poly(ethylene oxide) (PEO) were investigated as a function of the shear rate and crystallization temperature by optical microscopy. The radial growth rates of the spherulites are described by a kinetics equation including shearing and relaxation combined effects and the free energy for the formation of a secondary crystal nucleus. The free-energy difference between the liquid and crystalline phases increased slightly with rising shearing rates. The experimental findings showed that the influence of the relaxation of PEO, which is related to the shear-induced orientation and stretch in a PEO melt, on the rate of crystallization predominated over the influence of the shearing. This indicated that the relaxation of PEO should be more important so that the growth rates increase with shearing, but it was nearly independent of the shear rate within the measured experimental range.
Resumo:
In the organic-inorganic perovskites family, the < 100 >-oriented type has been extensively investigated as a result of its unique magnetic, optical, and electrical properties, and only one type of < 110 >-oriented hybrid perovskite stabilized by methylammonium and iodoformamidinium cations or the latter themselves has been known so far. In this paper, another novel < 110 >-oriented organic-inorganic perovskite (C6H13N3)-PbBr4 (compound 1) has been prepared by reacting N-(3-aminopropyl)imidazole (API) with PbBr2 in hydrobromic acid. The crystal structure is determined, which indicates that the perovskite is stabilized by API. The introduction of the optically active organic ligand API into the hybrid perovskite results in a red shift and a great enhancement of photoluminescence in the perovskite with respect to organic ligand API itself. These results have been explained according to calculation based on density-functional theory. Moreover, the excellent film processing ability for the perovskite (C6H13N3)PbBr4 together with the improved optical properties makes it have potential application in optoelectronic devices.
Resumo:
High-density polyethylene with shish-kebab structure, prepared by a melt extrusion drawing, was employed to investigate the effect of the well-defined lamellar orientation on the deformation characteristics under uniaxial tensile deformation along the drawing direction. This was done by investigating the true stress-true strain dependencies at different strain rates, recovery properties, and stress relaxation measurements. Measurements were complemented by recording in-situ wide-angle X-ray scattering patterns during the deformation process. The oriented samples showed not only a higher modulus, but different from analogous isotropic samples, a homogeneous deformation without necking. The true strain associated with the onset of fibrillation was determined. Because of the preorientation, it is shifted to 0.3, which is below the value 0.6 of the isotropic counterpart. The main finding is a strong enhancement of the Viscous force, as was revealed by stress relaxation experiments; the viscous force takes up 70% of the total stress. The presence of shish-kebabs, i.e., interconnected lamellae in a stack, seems to be responsible for the high viscous force in the oriented samples. The absence of necking has to be ascribed to the high viscous force.
Resumo:
Natural bone is one kind of compounds consisting of hydroxyapatite (HAp) nano-rods, which are embedded in the template of collagen matrix in vivo with the same crystallographic organization. Herein HAp nano-rods precursors were synthesized via wet chemical method. Large-scale HAp nano-wires with the same crystallographic organization as the template of anodic aluminum oxide (AAO) were obtained by the electrophoretic deposition and the technology of the template. It provides a meaningful method to study and understand the information of biological molecules' mineralization process.
Resumo:
In this work. we report the fabrication of high-quality (101)-oriented orthorhombic NaMnF3 and (100)-oriented cubic KMnF3 perovskites via an organic monolayer template at room temperature. The controlled crystallization under the organic monolayer template is explained in terms of the electrostatic interactions and beneficial lattice matching between the organic template and the ions undergoing nucleation. The present study is of great importance in the preparation of oriented perovskite materials as well as in the understanding of the mechanism for organic-template-directed crystallization.
Resumo:
Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.
Resumo:
The PVT data of five kinds of biaxially oriented polypropylene (BOPP) Resins was measured by the PVT-100 apparatus. Thermal expansion coefficients (alpha) and isothermal compressibility (beta) were evaluated from Tait equation in the melting state and then compared with those fitted with the value of experiment. The results showed that it was reasonable to calculate alpha and beta with Tait equation in the melting state. At the same time, it was found that thermal expansion coefficients, isothermal compressibility and the melting temperature (T-m) of one of BOPP melts (S28C) were lower than those of the others in the same test conditions, indicating that the volume deformation of S28C resin is' less so that it could be realized to avoid arising surface defects of the film (biaxially oriented polypropylene film) due to. contracting, thereby decrease damage to the film in the subsequence process. Accordingly superior processing properties of S28C resin are confirmed from PVT. speciality.
Resumo:
Melting recrystallization processes of melt-sheared films of polypropylene (S28C) fractions have been investigated in situ by polarized optical microscope equipped with CCD camera and hot-stage. Actually, the morphological developments in the melting recrystallization are partially reappearance of oriented crystallization processes during melt-shearing the fractions, which is due to a memory effect of oriented structure of polymer. For low molecular weight fraction, only incomplete spherulites with some orientation along shear direction are observed in the melting recrystallization processes of the sheared films. For middle molecular weight fractions, extended chain fiber crystals(or bands) are formed first at higher temperatures, and the bands can act as self-nuclei (i. e., row nuclei), resulting in epitaxial growth of chain-folded lamellae(or fibril), i. e., the formation of cylindrites, with further decrease of the crystallization temperature. For high molecular weight fraction, however, it is not possible to shear the melt film because of its high melt viscosity. When the low molecular weight fraction in which no fiber crystals or cylindrites are observed, are mixed with small amount(about 1%-2%) of the high molecular weight fraction, quite large number of cylindrites are formed during the melting recrystallization process of its sheared film, which implies that the component of high molecular weight plays an important role in the formation of cylindrites during the shear process of polypropylene.
Resumo:
In this paper, a new method of fabricating multilayers on a carbon substrate is presented. First, a uniformly charged carbon surface was prepared through molecular design. Then an ultrathin film consisting of layer-pairs of oppositely charged polymeric cationic poly(diallyldimethylammonium chloride) (PDDA) and silicotungstate, SiW12O404- (SiW12), was grown layer-by-layer onto the grafted carbon substrate using a molecular self-assembly technique and an electrochemical method. The technique allows one to prepare highly adherent, dense and smooth films of polyoxometalates with special properties. By combining cyclic voltammetry (CV) and X-ray (XR) reflectometry, it was determined that the average surface density of SiW12 was 2.10 x 10(-10) mol cm(-2), and the thickness increase per adsorption of PDDA-SiW12 was 1.7 +/- 0.2 nm, indicating that the amount of SiW12 anion per one layer adsorption corresponded to a monolayer coverage. Atomic force microscopy (AFM) was also used to examine the surface morphology and determine the grain size distribution and roughness for multilayer films. An increase in root-mean-square (RMS) surface roughness from 7 to 9 Angstrom was observed as the number of layer-pairs in the film increased from 2 to 6. FTIR results showed that the good stability of the multilayer films was due to Coulomb interactions between the SiW12 anion and the polymeric cations PDDA. Moreover, the multilayer films, in acidic aqueous solution, showed good electrocatalytic activity toward the reduction of NO2-, and the catalytic currents increased with increasing the layer numbers of SiW12 adsorption. These characteristics of the multilayer films might find potential applications in the field of sensors and microelectronics devices.
Resumo:
Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.
Resumo:
The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions, i.e.. two different relative relations (90 degrees and 180 degrees) between the directions of gravity and solidification, were investigated. X-ray diffraction results reveal that although similar layered structures are formed, under the condition of the relative relation 180 degrees. temperature gradient has greater effects on the perfect degree of the layered structures of P3DDT. It also can be concluded that after recrystallization, the layered structures of P3DDT can be improved at relative relation 90 degrees, but the orderly degree of the arrangements of alkyl side chains are not improved yet, even is reduced for both of the oriented solidification conditions.
Resumo:
Highly oriented pyrolytic graphite (HOPG) is the substrate often used in scanning tunneling microscopy (STM). It is well known that STM images of the basal plane of HOPG show some unusual structural patterns. In this letter, we present in situ STM images of some unusual features on HOPG in solutions, including normal or abnormal chain-like features and hexagonal or oblique superperiodic structures. These features emerge both next to and apart from the step of HOPG.
Resumo:
The controlling factors for the epitaxial crystallization of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) substrates have been studied in detail by means of transmission electron microscopy and electron diffraction. The results obtained in this work indicate that the crystallization process must be considered in the investigation of epitaxial growth of polymers on polymeric substrates, because of the unique morphological and crystallization characteristics of polymers. Crystallization rate has an important effect on the epitaxial crystallization of polymers. Higher rates result in the formation of thicker epitaxial layers. Isothermal crystallization temperature is another factor affecting epitaxial growth of polymers. Lower temperatures are favorable to epitaxial crystallization of polymers. There exists a critical epitaxial temperature at given experimental conditions, above which no epitaxial growth occurs at all. The influence of crystal dimensions of both the substrates and the deposited polymers on epitaxial growth confirms that secondary nucleation is an important controlling factor for the occurrence of epitaxial crystallization in polymers. The requirement satisfying the secondary nucleation criterion is that the substrate crystal dimension in the matching direction must be greater than the crystal thickness of the deposited polymer. Once the requirement of the secondary nucleation is satisfied, subsequent epitaxial growth is based on the lamellar growth habit of the deposited polymer itself. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The denaturation of cytochrome-e (cyt-c) induced by bromopyrogal red (BPR) was studied by scanning tunnelling microscopy (STM) on the electrochemically pretreated highly oriented pyrolytic graphite (HOPG) surface. STM images reveal that denatured cyt-c molecules exist in variable states including aggregates, globular compact, partially unfolded and combined with BPR molecule. The apparently low image contrast of denatured cyt-c observed in this experiment comparing to that of native cyt-c molecules, and the relative low image contrast of the unfolded part comparing with the compact globular part, are ascribed to the unfavourable tunnelling paths for the conformational variations of denatured cyt-c molecules. (C) 1997 Elsevier Science B.V.
Resumo:
The recrystallization behavior of high-density polyethylene (HDPE) on the highly oriented isotactic polypropylene (iPP) substrates at temperatures below the melting temperature of HDPE has been investigated by means of transmission electron microscopy. The results obtained by the bright-field observation and the electron diffraction show that upon annealing the HDPE-quenched films on the oriented iPP substrates at temperatures below 125 degrees C, only a small amount of HDPE recrystallizes on the iPP substrate with [001](HDPE)//[001](iPP), while annealing the HDPE-quenched films at temperatures above 125 degrees C, all of the HDPE crystallites recrystallize epitaxially on the iPP substrate with [001](HDPE)//[101](iPP). (C) 1997 John Wiley & Sons, Inc.