114 resultados para Nucleon-nucleon interaction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of momentum dependent interaction on the kinetic energy spectrum of the neutron-proton ratio r(b)(E-k) in the equation of state of nuclear matter was investigated. We found that the kinetic energy spectrum of the neutron-proton ratio r(b)(E-k) depends sensitively on the momentum dependent interaction and weakly on the in-medium nucleon-nucleon cross section and symmetry potential so that the r(b) (E-k) is a sensitive physical probe for extracting the information of momentum dependent interaction in the heavy ion collisions. At the same time, the comparing investigate between r(b)(E-k) for the neutron-rich collision system and the same mass stable collision system gives a important judgment for extracting the information of momentum dependent interaction in the heavy ion collisions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we systematically study the interaction of D* and nucleon, which is stimulated by the observation of Lambda(c)(2940)(+) close to the threshold of D* p. Our numerical result obtained by the dynamical investigation indicates the existence of the D* N systems with J(P) = 1/2(+/-), 3/2(+/-), which not only provides valuable information to understand the underlying structure of Lambda(c)(2940)(+) but also improves our knowledge of the interaction of D* and nucleon. Additionally, the bottom partners of the D* N systems are predicted, which might be as one of the tasks in LHCb experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With an effective Lagrangian approach, we analyze several NN -> NN pi pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440) -> N sigma in the near-threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440) -> Delta pi, double-Delta, Delta(1600) -> N*(1440)pi, Delta(1600) -> Delta pi and Delta(1620) -> Delta pi. There are also sizable contributions from Delta -> Delta pi, Delta -> N pi, N -> Delta pi, and nucleon pole at energies close to the threshold. We give a good reproduction to the total cross sections up to beam energies of 2.2 GeV except for the pp -> pp pi(0)pi(0) channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp -> pp pi(+)p pi(-), pp -> nn pi(+)pi(+), and pp -> pp pi(0)pi(0) which are measured at CELSIUS and COSY.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of momentum-dependent interaction on the kinetic energy spectrum of the neutron-proton ratio. <(n/p)(gas)>(b)(E-k) for Zn-64 + Zn-64 is studied. It is found that. <(n/p)(gas)>(b)(E-k) sensitively depends on the momentum-dependent interaction and weakly on the in- medium nucleon- nucleon cross section and symmetry potential. Therefore <(n/p)(gas)>(b)(E-k) is a possible probe for extracting information on the momentum-dependent interaction in heavy ion collisions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigate the nucleon superfluidity in asymmetric nuclear matter and neutron star matter by using the Brueckner-Hartree-Fock approach and the BCS theory. We have predicted the isospin-asymmetry dependence of the nucleon superfluidity in asymmetric nuclear matter and discussed particularly the effect of microscopic three-body forces. It has been shown that the three-body force leads to a strong suppression of the proton S-1(0) superfluidity in beta -stable neutron star matter. Whereas the microscopic three-body force is found to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The in medium nucleon-nucleon (N N) cross sections in isospin asymmetric nuclear matter at various densities are investigated in the frame work of Brueckner-Hartree-Fock theory with the Bonn B two-body nucleon-nucleon inter action supplemented with a new version microscopic three-body force (TBF). The TBF depresses the amplitude of cross sections at high density region. At low densities, the proton-proton and neutron-neutron cross sections decrease while the proton-neutron one increases as the asymmetry increases. But the sensitivity of the N N cross sections to the isospin a symmetry are reduced with the increasing density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a general SU(2)(L) x SU(2)(R) x U(1)(EM) sigma model with external sources, dynamical breaking and spontaneous vacuum symmetry breaking, and present the general formulation of the model. It is found that sigma and pi(0) without electric charges have electromagnetic interaction effects coming front the internal structures. A general Lorentz transformation relative to external sources J(gauge) - (J(A mu) J(A mu)(kappa)) derived, using the general Lorentz transformation and the four-dimensional current of nuclear matter of the ground si ate with J(gauge) = 0, we give the four-dimensional general relations between the different currents of nuclear matter systems with J(gauge) not equal 0 and those with J(gauge) = 0. The relation of the density's coupling with external magnetic field is derived, which conforms well to dense nuclear matter in a strong magnetic field. We show different condensed effects in strong interaction about fermions and antifermions, and give the concrete scalar and pseudoscalar condensed expressions of sigma(0) and pi(0) bosons. About different dynamical breaking and spontaneous vacuum symmetry breaking, the concrete expressions of different mass spectra are obtained in field theory. This paper acquires the running spontaneous vacuum breaking value sigma'(0), and obtains the spontaneous vacuum breaking in tenus of the running sigma'(0), which make nucleon, sigma, and pi particles gain effective masses. We achieve both the effect of external sources and nonvanishing value of the condensed scalar and pseudoscalar paticles. It is deduced that the masses of nucleons, sigma and pi generally depend on different external sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the average property of the isospin effects of reaction mechanism induced by neutron-halo nuclei within the isospin-dependent quantum molecular dynamics model. We find that the extended neutron density distribution for the neutron-halo projectile brings an important isospin effect into the reaction mechanism, which induces the decrease of nuclear stopping R; however, it induces the obvious increases of the neutron-proton ratio of nucleon emissions (n/p)(nucl) for all of the beam energies in this work, compared to the same mass stable colliding system.